chore: update frontend build for v1.1.82 [skip ci]

This commit is contained in:
github-actions[bot]
2025-08-06 02:27:53 +00:00
parent 2fd90c5620
commit f3787d775e
19300 changed files with 2 additions and 2351566 deletions

View File

@@ -1,844 +0,0 @@
'use strict';
function clamp(n, min, max) {
return Math.min(max, Math.max(min, n));
}
function sum(...args) {
return flattenArrayable(args).reduce((a, b) => a + b, 0);
}
function lerp(min, max, t) {
const interpolation = clamp(t, 0, 1);
return min + (max - min) * interpolation;
}
function remap(n, inMin, inMax, outMin, outMax) {
const interpolation = (n - inMin) / (inMax - inMin);
return lerp(outMin, outMax, interpolation);
}
function toArray(array) {
array = array ?? [];
return Array.isArray(array) ? array : [array];
}
function flattenArrayable(array) {
return toArray(array).flat(1);
}
function mergeArrayable(...args) {
return args.flatMap((i) => toArray(i));
}
function partition(array, ...filters) {
const result = Array.from({ length: filters.length + 1 }).fill(null).map(() => []);
array.forEach((e, idx, arr) => {
let i = 0;
for (const filter of filters) {
if (filter(e, idx, arr)) {
result[i].push(e);
return;
}
i += 1;
}
result[i].push(e);
});
return result;
}
function uniq(array) {
return Array.from(new Set(array));
}
function uniqueBy(array, equalFn) {
return array.reduce((acc, cur) => {
const index = acc.findIndex((item) => equalFn(cur, item));
if (index === -1)
acc.push(cur);
return acc;
}, []);
}
function last(array) {
return at(array, -1);
}
function remove(array, value) {
if (!array)
return false;
const index = array.indexOf(value);
if (index >= 0) {
array.splice(index, 1);
return true;
}
return false;
}
function at(array, index) {
const len = array.length;
if (!len)
return void 0;
if (index < 0)
index += len;
return array[index];
}
function range(...args) {
let start, stop, step;
if (args.length === 1) {
start = 0;
step = 1;
[stop] = args;
} else {
[start, stop, step = 1] = args;
}
const arr = [];
let current = start;
while (current < stop) {
arr.push(current);
current += step || 1;
}
return arr;
}
function move(arr, from, to) {
arr.splice(to, 0, arr.splice(from, 1)[0]);
return arr;
}
function clampArrayRange(n, arr) {
return clamp(n, 0, arr.length - 1);
}
function sample(arr, quantity) {
return Array.from({ length: quantity }, (_) => arr[Math.round(Math.random() * (arr.length - 1))]);
}
function shuffle(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
return array;
}
function assert(condition, message) {
if (!condition)
throw new Error(message);
}
const toString = (v) => Object.prototype.toString.call(v);
function getTypeName(v) {
if (v === null)
return "null";
const type = toString(v).slice(8, -1).toLowerCase();
return typeof v === "object" || typeof v === "function" ? type : typeof v;
}
function noop() {
}
function isDeepEqual(value1, value2) {
const type1 = getTypeName(value1);
const type2 = getTypeName(value2);
if (type1 !== type2)
return false;
if (type1 === "array") {
if (value1.length !== value2.length)
return false;
return value1.every((item, i) => {
return isDeepEqual(item, value2[i]);
});
}
if (type1 === "object") {
const keyArr = Object.keys(value1);
if (keyArr.length !== Object.keys(value2).length)
return false;
return keyArr.every((key) => {
return isDeepEqual(value1[key], value2[key]);
});
}
return Object.is(value1, value2);
}
function notNullish(v) {
return v != null;
}
function noNull(v) {
return v !== null;
}
function notUndefined(v) {
return v !== void 0;
}
function isTruthy(v) {
return Boolean(v);
}
const isDef = (val) => typeof val !== "undefined";
const isBoolean = (val) => typeof val === "boolean";
const isFunction = (val) => typeof val === "function";
const isNumber = (val) => typeof val === "number";
const isString = (val) => typeof val === "string";
const isObject = (val) => toString(val) === "[object Object]";
const isUndefined = (val) => toString(val) === "[object Undefined]";
const isNull = (val) => toString(val) === "[object Null]";
const isRegExp = (val) => toString(val) === "[object RegExp]";
const isDate = (val) => toString(val) === "[object Date]";
const isWindow = (val) => typeof window !== "undefined" && toString(val) === "[object Window]";
const isBrowser = typeof window !== "undefined";
function slash(str) {
return str.replace(/\\/g, "/");
}
function ensurePrefix(prefix, str) {
if (!str.startsWith(prefix))
return prefix + str;
return str;
}
function ensureSuffix(suffix, str) {
if (!str.endsWith(suffix))
return str + suffix;
return str;
}
function template(str, ...args) {
const [firstArg, fallback] = args;
if (isObject(firstArg)) {
const vars = firstArg;
return str.replace(/{([\w\d]+)}/g, (_, key) => vars[key] || ((typeof fallback === "function" ? fallback(key) : fallback) ?? key));
} else {
return str.replace(/{(\d+)}/g, (_, key) => {
const index = Number(key);
if (Number.isNaN(index))
return key;
return args[index];
});
}
}
const urlAlphabet = "useandom-26T198340PX75pxJACKVERYMINDBUSHWOLF_GQZbfghjklqvwyzrict";
function randomStr(size = 16, dict = urlAlphabet) {
let id = "";
let i = size;
const len = dict.length;
while (i--)
id += dict[Math.random() * len | 0];
return id;
}
function capitalize(str) {
return str[0].toUpperCase() + str.slice(1).toLowerCase();
}
const _reFullWs = /^\s*$/;
function unindent(str) {
const lines = (typeof str === "string" ? str : str[0]).split("\n");
const whitespaceLines = lines.map((line) => _reFullWs.test(line));
const commonIndent = lines.reduce((min, line, idx) => {
var _a;
if (whitespaceLines[idx])
return min;
const indent = (_a = line.match(/^\s*/)) == null ? void 0 : _a[0].length;
return indent === void 0 ? min : Math.min(min, indent);
}, Number.POSITIVE_INFINITY);
let emptyLinesHead = 0;
while (emptyLinesHead < lines.length && whitespaceLines[emptyLinesHead])
emptyLinesHead++;
let emptyLinesTail = 0;
while (emptyLinesTail < lines.length && whitespaceLines[lines.length - emptyLinesTail - 1])
emptyLinesTail++;
return lines.slice(emptyLinesHead, lines.length - emptyLinesTail).map((line) => line.slice(commonIndent)).join("\n");
}
const timestamp = () => +Date.now();
function batchInvoke(functions) {
functions.forEach((fn) => fn && fn());
}
function invoke(fn) {
return fn();
}
function tap(value, callback) {
callback(value);
return value;
}
function objectMap(obj, fn) {
return Object.fromEntries(
Object.entries(obj).map(([k, v]) => fn(k, v)).filter(notNullish)
);
}
function isKeyOf(obj, k) {
return k in obj;
}
function objectKeys(obj) {
return Object.keys(obj);
}
function objectEntries(obj) {
return Object.entries(obj);
}
function deepMerge(target, ...sources) {
if (!sources.length)
return target;
const source = sources.shift();
if (source === void 0)
return target;
if (isMergableObject(target) && isMergableObject(source)) {
objectKeys(source).forEach((key) => {
if (key === "__proto__" || key === "constructor" || key === "prototype")
return;
if (isMergableObject(source[key])) {
if (!target[key])
target[key] = {};
if (isMergableObject(target[key])) {
deepMerge(target[key], source[key]);
} else {
target[key] = source[key];
}
} else {
target[key] = source[key];
}
});
}
return deepMerge(target, ...sources);
}
function deepMergeWithArray(target, ...sources) {
if (!sources.length)
return target;
const source = sources.shift();
if (source === void 0)
return target;
if (Array.isArray(target) && Array.isArray(source))
target.push(...source);
if (isMergableObject(target) && isMergableObject(source)) {
objectKeys(source).forEach((key) => {
if (key === "__proto__" || key === "constructor" || key === "prototype")
return;
if (Array.isArray(source[key])) {
if (!target[key])
target[key] = [];
deepMergeWithArray(target[key], source[key]);
} else if (isMergableObject(source[key])) {
if (!target[key])
target[key] = {};
deepMergeWithArray(target[key], source[key]);
} else {
target[key] = source[key];
}
});
}
return deepMergeWithArray(target, ...sources);
}
function isMergableObject(item) {
return isObject(item) && !Array.isArray(item);
}
function objectPick(obj, keys, omitUndefined = false) {
return keys.reduce((n, k) => {
if (k in obj) {
if (!omitUndefined || obj[k] !== void 0)
n[k] = obj[k];
}
return n;
}, {});
}
function clearUndefined(obj) {
Object.keys(obj).forEach((key) => obj[key] === void 0 ? delete obj[key] : {});
return obj;
}
function hasOwnProperty(obj, v) {
if (obj == null)
return false;
return Object.prototype.hasOwnProperty.call(obj, v);
}
function createSingletonPromise(fn) {
let _promise;
function wrapper() {
if (!_promise)
_promise = fn();
return _promise;
}
wrapper.reset = async () => {
const _prev = _promise;
_promise = void 0;
if (_prev)
await _prev;
};
return wrapper;
}
function sleep(ms, callback) {
return new Promise(
(resolve) => setTimeout(async () => {
await (callback == null ? void 0 : callback());
resolve();
}, ms)
);
}
function createPromiseLock() {
const locks = [];
return {
async run(fn) {
const p = fn();
locks.push(p);
try {
return await p;
} finally {
remove(locks, p);
}
},
async wait() {
await Promise.allSettled(locks);
},
isWaiting() {
return Boolean(locks.length);
},
clear() {
locks.length = 0;
}
};
}
function createControlledPromise() {
let resolve, reject;
const promise = new Promise((_resolve, _reject) => {
resolve = _resolve;
reject = _reject;
});
promise.resolve = resolve;
promise.reject = reject;
return promise;
}
/* eslint-disable no-undefined,no-param-reassign,no-shadow */
/**
* Throttle execution of a function. Especially useful for rate limiting
* execution of handlers on events like resize and scroll.
*
* @param {number} delay - A zero-or-greater delay in milliseconds. For event callbacks, values around 100 or 250 (or even higher)
* are most useful.
* @param {Function} callback - A function to be executed after delay milliseconds. The `this` context and all arguments are passed through,
* as-is, to `callback` when the throttled-function is executed.
* @param {object} [options] - An object to configure options.
* @param {boolean} [options.noTrailing] - Optional, defaults to false. If noTrailing is true, callback will only execute every `delay` milliseconds
* while the throttled-function is being called. If noTrailing is false or unspecified, callback will be executed
* one final time after the last throttled-function call. (After the throttled-function has not been called for
* `delay` milliseconds, the internal counter is reset).
* @param {boolean} [options.noLeading] - Optional, defaults to false. If noLeading is false, the first throttled-function call will execute callback
* immediately. If noLeading is true, the first the callback execution will be skipped. It should be noted that
* callback will never executed if both noLeading = true and noTrailing = true.
* @param {boolean} [options.debounceMode] - If `debounceMode` is true (at begin), schedule `clear` to execute after `delay` ms. If `debounceMode` is
* false (at end), schedule `callback` to execute after `delay` ms.
*
* @returns {Function} A new, throttled, function.
*/
function throttle (delay, callback, options) {
var _ref = options || {},
_ref$noTrailing = _ref.noTrailing,
noTrailing = _ref$noTrailing === void 0 ? false : _ref$noTrailing,
_ref$noLeading = _ref.noLeading,
noLeading = _ref$noLeading === void 0 ? false : _ref$noLeading,
_ref$debounceMode = _ref.debounceMode,
debounceMode = _ref$debounceMode === void 0 ? undefined : _ref$debounceMode;
/*
* After wrapper has stopped being called, this timeout ensures that
* `callback` is executed at the proper times in `throttle` and `end`
* debounce modes.
*/
var timeoutID;
var cancelled = false; // Keep track of the last time `callback` was executed.
var lastExec = 0; // Function to clear existing timeout
function clearExistingTimeout() {
if (timeoutID) {
clearTimeout(timeoutID);
}
} // Function to cancel next exec
function cancel(options) {
var _ref2 = options || {},
_ref2$upcomingOnly = _ref2.upcomingOnly,
upcomingOnly = _ref2$upcomingOnly === void 0 ? false : _ref2$upcomingOnly;
clearExistingTimeout();
cancelled = !upcomingOnly;
}
/*
* The `wrapper` function encapsulates all of the throttling / debouncing
* functionality and when executed will limit the rate at which `callback`
* is executed.
*/
function wrapper() {
for (var _len = arguments.length, arguments_ = new Array(_len), _key = 0; _key < _len; _key++) {
arguments_[_key] = arguments[_key];
}
var self = this;
var elapsed = Date.now() - lastExec;
if (cancelled) {
return;
} // Execute `callback` and update the `lastExec` timestamp.
function exec() {
lastExec = Date.now();
callback.apply(self, arguments_);
}
/*
* If `debounceMode` is true (at begin) this is used to clear the flag
* to allow future `callback` executions.
*/
function clear() {
timeoutID = undefined;
}
if (!noLeading && debounceMode && !timeoutID) {
/*
* Since `wrapper` is being called for the first time and
* `debounceMode` is true (at begin), execute `callback`
* and noLeading != true.
*/
exec();
}
clearExistingTimeout();
if (debounceMode === undefined && elapsed > delay) {
if (noLeading) {
/*
* In throttle mode with noLeading, if `delay` time has
* been exceeded, update `lastExec` and schedule `callback`
* to execute after `delay` ms.
*/
lastExec = Date.now();
if (!noTrailing) {
timeoutID = setTimeout(debounceMode ? clear : exec, delay);
}
} else {
/*
* In throttle mode without noLeading, if `delay` time has been exceeded, execute
* `callback`.
*/
exec();
}
} else if (noTrailing !== true) {
/*
* In trailing throttle mode, since `delay` time has not been
* exceeded, schedule `callback` to execute `delay` ms after most
* recent execution.
*
* If `debounceMode` is true (at begin), schedule `clear` to execute
* after `delay` ms.
*
* If `debounceMode` is false (at end), schedule `callback` to
* execute after `delay` ms.
*/
timeoutID = setTimeout(debounceMode ? clear : exec, debounceMode === undefined ? delay - elapsed : delay);
}
}
wrapper.cancel = cancel; // Return the wrapper function.
return wrapper;
}
/* eslint-disable no-undefined */
/**
* Debounce execution of a function. Debouncing, unlike throttling,
* guarantees that a function is only executed a single time, either at the
* very beginning of a series of calls, or at the very end.
*
* @param {number} delay - A zero-or-greater delay in milliseconds. For event callbacks, values around 100 or 250 (or even higher) are most useful.
* @param {Function} callback - A function to be executed after delay milliseconds. The `this` context and all arguments are passed through, as-is,
* to `callback` when the debounced-function is executed.
* @param {object} [options] - An object to configure options.
* @param {boolean} [options.atBegin] - Optional, defaults to false. If atBegin is false or unspecified, callback will only be executed `delay` milliseconds
* after the last debounced-function call. If atBegin is true, callback will be executed only at the first debounced-function call.
* (After the throttled-function has not been called for `delay` milliseconds, the internal counter is reset).
*
* @returns {Function} A new, debounced function.
*/
function debounce (delay, callback, options) {
var _ref = options || {},
_ref$atBegin = _ref.atBegin,
atBegin = _ref$atBegin === void 0 ? false : _ref$atBegin;
return throttle(delay, callback, {
debounceMode: atBegin !== false
});
}
/*
How it works:
`this.#head` is an instance of `Node` which keeps track of its current value and nests another instance of `Node` that keeps the value that comes after it. When a value is provided to `.enqueue()`, the code needs to iterate through `this.#head`, going deeper and deeper to find the last value. However, iterating through every single item is slow. This problem is solved by saving a reference to the last value as `this.#tail` so that it can reference it to add a new value.
*/
class Node {
value;
next;
constructor(value) {
this.value = value;
}
}
class Queue {
#head;
#tail;
#size;
constructor() {
this.clear();
}
enqueue(value) {
const node = new Node(value);
if (this.#head) {
this.#tail.next = node;
this.#tail = node;
} else {
this.#head = node;
this.#tail = node;
}
this.#size++;
}
dequeue() {
const current = this.#head;
if (!current) {
return;
}
this.#head = this.#head.next;
this.#size--;
return current.value;
}
clear() {
this.#head = undefined;
this.#tail = undefined;
this.#size = 0;
}
get size() {
return this.#size;
}
* [Symbol.iterator]() {
let current = this.#head;
while (current) {
yield current.value;
current = current.next;
}
}
}
const AsyncResource = {
bind(fn, _type, thisArg) {
return fn.bind(thisArg);
},
};
function pLimit(concurrency) {
if (!((Number.isInteger(concurrency) || concurrency === Number.POSITIVE_INFINITY) && concurrency > 0)) {
throw new TypeError('Expected `concurrency` to be a number from 1 and up');
}
const queue = new Queue();
let activeCount = 0;
const next = () => {
activeCount--;
if (queue.size > 0) {
queue.dequeue()();
}
};
const run = async (function_, resolve, arguments_) => {
activeCount++;
const result = (async () => function_(...arguments_))();
resolve(result);
try {
await result;
} catch {}
next();
};
const enqueue = (function_, resolve, arguments_) => {
queue.enqueue(
AsyncResource.bind(run.bind(undefined, function_, resolve, arguments_)),
);
(async () => {
// This function needs to wait until the next microtask before comparing
// `activeCount` to `concurrency`, because `activeCount` is updated asynchronously
// when the run function is dequeued and called. The comparison in the if-statement
// needs to happen asynchronously as well to get an up-to-date value for `activeCount`.
await Promise.resolve();
if (activeCount < concurrency && queue.size > 0) {
queue.dequeue()();
}
})();
};
const generator = (function_, ...arguments_) => new Promise(resolve => {
enqueue(function_, resolve, arguments_);
});
Object.defineProperties(generator, {
activeCount: {
get: () => activeCount,
},
pendingCount: {
get: () => queue.size,
},
clearQueue: {
value() {
queue.clear();
},
},
});
return generator;
}
const VOID = Symbol("p-void");
class PInstance extends Promise {
constructor(items = [], options) {
super(() => {
});
this.items = items;
this.options = options;
this.promises = /* @__PURE__ */ new Set();
}
get promise() {
var _a;
let batch;
const items = [...Array.from(this.items), ...Array.from(this.promises)];
if ((_a = this.options) == null ? void 0 : _a.concurrency) {
const limit = pLimit(this.options.concurrency);
batch = Promise.all(items.map((p2) => limit(() => p2)));
} else {
batch = Promise.all(items);
}
return batch.then((l) => l.filter((i) => i !== VOID));
}
add(...args) {
args.forEach((i) => {
this.promises.add(i);
});
}
map(fn) {
return new PInstance(
Array.from(this.items).map(async (i, idx) => {
const v = await i;
if (v === VOID)
return VOID;
return fn(v, idx);
}),
this.options
);
}
filter(fn) {
return new PInstance(
Array.from(this.items).map(async (i, idx) => {
const v = await i;
const r = await fn(v, idx);
if (!r)
return VOID;
return v;
}),
this.options
);
}
forEach(fn) {
return this.map(fn).then();
}
reduce(fn, initialValue) {
return this.promise.then((array) => array.reduce(fn, initialValue));
}
clear() {
this.promises.clear();
}
then(fn) {
const p2 = this.promise;
if (fn)
return p2.then(fn);
else
return p2;
}
catch(fn) {
return this.promise.catch(fn);
}
finally(fn) {
return this.promise.finally(fn);
}
}
function p(items, options) {
return new PInstance(items, options);
}
exports.assert = assert;
exports.at = at;
exports.batchInvoke = batchInvoke;
exports.capitalize = capitalize;
exports.clamp = clamp;
exports.clampArrayRange = clampArrayRange;
exports.clearUndefined = clearUndefined;
exports.createControlledPromise = createControlledPromise;
exports.createPromiseLock = createPromiseLock;
exports.createSingletonPromise = createSingletonPromise;
exports.debounce = debounce;
exports.deepMerge = deepMerge;
exports.deepMergeWithArray = deepMergeWithArray;
exports.ensurePrefix = ensurePrefix;
exports.ensureSuffix = ensureSuffix;
exports.flattenArrayable = flattenArrayable;
exports.getTypeName = getTypeName;
exports.hasOwnProperty = hasOwnProperty;
exports.invoke = invoke;
exports.isBoolean = isBoolean;
exports.isBrowser = isBrowser;
exports.isDate = isDate;
exports.isDeepEqual = isDeepEqual;
exports.isDef = isDef;
exports.isFunction = isFunction;
exports.isKeyOf = isKeyOf;
exports.isNull = isNull;
exports.isNumber = isNumber;
exports.isObject = isObject;
exports.isRegExp = isRegExp;
exports.isString = isString;
exports.isTruthy = isTruthy;
exports.isUndefined = isUndefined;
exports.isWindow = isWindow;
exports.last = last;
exports.lerp = lerp;
exports.mergeArrayable = mergeArrayable;
exports.move = move;
exports.noNull = noNull;
exports.noop = noop;
exports.notNullish = notNullish;
exports.notUndefined = notUndefined;
exports.objectEntries = objectEntries;
exports.objectKeys = objectKeys;
exports.objectMap = objectMap;
exports.objectPick = objectPick;
exports.p = p;
exports.partition = partition;
exports.randomStr = randomStr;
exports.range = range;
exports.remap = remap;
exports.remove = remove;
exports.sample = sample;
exports.shuffle = shuffle;
exports.slash = slash;
exports.sleep = sleep;
exports.sum = sum;
exports.tap = tap;
exports.template = template;
exports.throttle = throttle;
exports.timestamp = timestamp;
exports.toArray = toArray;
exports.toString = toString;
exports.unindent = unindent;
exports.uniq = uniq;
exports.uniqueBy = uniqueBy;

View File

@@ -1,614 +0,0 @@
/**
* Promise, or maybe not
*/
type Awaitable<T> = T | PromiseLike<T>;
/**
* Null or whatever
*/
type Nullable<T> = T | null | undefined;
/**
* Array, or not yet
*/
type Arrayable<T> = T | Array<T>;
/**
* Function
*/
type Fn<T = void> = () => T;
/**
* Constructor
*/
type Constructor<T = void> = new (...args: any[]) => T;
/**
* Infers the element type of an array
*/
type ElementOf<T> = T extends (infer E)[] ? E : never;
/**
* Defines an intersection type of all union items.
*
* @param U Union of any types that will be intersected.
* @returns U items intersected
* @see https://stackoverflow.com/a/50375286/9259330
*/
type UnionToIntersection<U> = (U extends unknown ? (k: U) => void : never) extends ((k: infer I) => void) ? I : never;
/**
* Infers the arguments type of a function
*/
type ArgumentsType<T> = T extends ((...args: infer A) => any) ? A : never;
type MergeInsertions<T> = T extends object ? {
[K in keyof T]: MergeInsertions<T[K]>;
} : T;
type DeepMerge<F, S> = MergeInsertions<{
[K in keyof F | keyof S]: K extends keyof S & keyof F ? DeepMerge<F[K], S[K]> : K extends keyof S ? S[K] : K extends keyof F ? F[K] : never;
}>;
/**
* Convert `Arrayable<T>` to `Array<T>`
*
* @category Array
*/
declare function toArray<T>(array?: Nullable<Arrayable<T>>): Array<T>;
/**
* Convert `Arrayable<T>` to `Array<T>` and flatten it
*
* @category Array
*/
declare function flattenArrayable<T>(array?: Nullable<Arrayable<T | Array<T>>>): Array<T>;
/**
* Use rest arguments to merge arrays
*
* @category Array
*/
declare function mergeArrayable<T>(...args: Nullable<Arrayable<T>>[]): Array<T>;
type PartitionFilter<T> = (i: T, idx: number, arr: readonly T[]) => any;
/**
* Divide an array into two parts by a filter function
*
* @category Array
* @example const [odd, even] = partition([1, 2, 3, 4], i => i % 2 != 0)
*/
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>): [T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>): [T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>): [T[], T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>, f4: PartitionFilter<T>): [T[], T[], T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>, f4: PartitionFilter<T>, f5: PartitionFilter<T>): [T[], T[], T[], T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>, f4: PartitionFilter<T>, f5: PartitionFilter<T>, f6: PartitionFilter<T>): [T[], T[], T[], T[], T[], T[], T[]];
/**
* Unique an Array
*
* @category Array
*/
declare function uniq<T>(array: readonly T[]): T[];
/**
* Unique an Array by a custom equality function
*
* @category Array
*/
declare function uniqueBy<T>(array: readonly T[], equalFn: (a: any, b: any) => boolean): T[];
/**
* Get last item
*
* @category Array
*/
declare function last(array: readonly []): undefined;
declare function last<T>(array: readonly T[]): T;
/**
* Remove an item from Array
*
* @category Array
*/
declare function remove<T>(array: T[], value: T): boolean;
/**
* Get nth item of Array. Negative for backward
*
* @category Array
*/
declare function at(array: readonly [], index: number): undefined;
declare function at<T>(array: readonly T[], index: number): T;
/**
* Genrate a range array of numbers. The `stop` is exclusive.
*
* @category Array
*/
declare function range(stop: number): number[];
declare function range(start: number, stop: number, step?: number): number[];
/**
* Move element in an Array
*
* @category Array
* @param arr
* @param from
* @param to
*/
declare function move<T>(arr: T[], from: number, to: number): T[];
/**
* Clamp a number to the index range of an array
*
* @category Array
*/
declare function clampArrayRange(n: number, arr: readonly unknown[]): number;
/**
* Get random item(s) from an array
*
* @param arr
* @param quantity - quantity of random items which will be returned
*/
declare function sample<T>(arr: T[], quantity: number): T[];
/**
* Shuffle an array. This function mutates the array.
*
* @category Array
*/
declare function shuffle<T>(array: T[]): T[];
declare function assert(condition: boolean, message: string): asserts condition;
declare const toString: (v: any) => string;
declare function getTypeName(v: any): string;
declare function noop(): void;
declare function isDeepEqual(value1: any, value2: any): boolean;
/**
* Type guard to filter out null-ish values
*
* @category Guards
* @example array.filter(notNullish)
*/
declare function notNullish<T>(v: T | null | undefined): v is NonNullable<T>;
/**
* Type guard to filter out null values
*
* @category Guards
* @example array.filter(noNull)
*/
declare function noNull<T>(v: T | null): v is Exclude<T, null>;
/**
* Type guard to filter out null-ish values
*
* @category Guards
* @example array.filter(notUndefined)
*/
declare function notUndefined<T>(v: T): v is Exclude<T, undefined>;
/**
* Type guard to filter out falsy values
*
* @category Guards
* @example array.filter(isTruthy)
*/
declare function isTruthy<T>(v: T): v is NonNullable<T>;
declare const isDef: <T = any>(val?: T) => val is T;
declare const isBoolean: (val: any) => val is boolean;
declare const isFunction: <T extends Function>(val: any) => val is T;
declare const isNumber: (val: any) => val is number;
declare const isString: (val: unknown) => val is string;
declare const isObject: (val: any) => val is object;
declare const isUndefined: (val: any) => val is undefined;
declare const isNull: (val: any) => val is null;
declare const isRegExp: (val: any) => val is RegExp;
declare const isDate: (val: any) => val is Date;
declare const isWindow: (val: any) => boolean;
declare const isBrowser: boolean;
declare function clamp(n: number, min: number, max: number): number;
declare function sum(...args: number[] | number[][]): number;
/**
* Linearly interpolates between `min` and `max` based on `t`
*
* @category Math
* @param min The minimum value
* @param max The maximum value
* @param t The interpolation value clamped between 0 and 1
* @example
* ```
* const value = lerp(0, 2, 0.5) // value will be 1
* ```
*/
declare function lerp(min: number, max: number, t: number): number;
/**
* Linearly remaps a clamped value from its source range [`inMin`, `inMax`] to the destination range [`outMin`, `outMax`]
*
* @category Math
* @example
* ```
* const value = remap(0.5, 0, 1, 200, 400) // value will be 300
* ```
*/
declare function remap(n: number, inMin: number, inMax: number, outMin: number, outMax: number): number;
/**
* Replace backslash to slash
*
* @category String
*/
declare function slash(str: string): string;
/**
* Ensure prefix of a string
*
* @category String
*/
declare function ensurePrefix(prefix: string, str: string): string;
/**
* Ensure suffix of a string
*
* @category String
*/
declare function ensureSuffix(suffix: string, str: string): string;
/**
* Dead simple template engine, just like Python's `.format()`
* Support passing variables as either in index based or object/name based approach
* While using object/name based approach, you can pass a fallback value as the third argument
*
* @category String
* @example
* ```
* const result = template(
* 'Hello {0}! My name is {1}.',
* 'Inès',
* 'Anthony'
* ) // Hello Inès! My name is Anthony.
* ```
*
* ```
* const result = namedTemplate(
* '{greet}! My name is {name}.',
* { greet: 'Hello', name: 'Anthony' }
* ) // Hello! My name is Anthony.
* ```
*
* const result = namedTemplate(
* '{greet}! My name is {name}.',
* { greet: 'Hello' }, // name isn't passed hence fallback will be used for name
* 'placeholder'
* ) // Hello! My name is placeholder.
* ```
*/
declare function template(str: string, object: Record<string | number, any>, fallback?: string | ((key: string) => string)): string;
declare function template(str: string, ...args: (string | number | bigint | undefined | null)[]): string;
/**
* Generate a random string
* @category String
*/
declare function randomStr(size?: number, dict?: string): string;
/**
* First letter uppercase, other lowercase
* @category string
* @example
* ```
* capitalize('hello') => 'Hello'
* ```
*/
declare function capitalize(str: string): string;
/**
* Remove common leading whitespace from a template string.
* Will also remove empty lines at the beginning and end.
* @category string
* @example
* ```ts
* const str = unindent`
* if (a) {
* b()
* }
* `
*/
declare function unindent(str: TemplateStringsArray | string): string;
declare const timestamp: () => number;
/**
* Call every function in an array
*/
declare function batchInvoke(functions: Nullable<Fn>[]): void;
/**
* Call the function
*/
declare function invoke(fn: Fn): void;
/**
* Pass the value through the callback, and return the value
*
* @example
* ```
* function createUser(name: string): User {
* return tap(new User, user => {
* user.name = name
* })
* }
* ```
*/
declare function tap<T>(value: T, callback: (value: T) => void): T;
/**
* Map key/value pairs for an object, and construct a new one
*
*
* @category Object
*
* Transform:
* @example
* ```
* objectMap({ a: 1, b: 2 }, (k, v) => [k.toString().toUpperCase(), v.toString()])
* // { A: '1', B: '2' }
* ```
*
* Swap key/value:
* @example
* ```
* objectMap({ a: 1, b: 2 }, (k, v) => [v, k])
* // { 1: 'a', 2: 'b' }
* ```
*
* Filter keys:
* @example
* ```
* objectMap({ a: 1, b: 2 }, (k, v) => k === 'a' ? undefined : [k, v])
* // { b: 2 }
* ```
*/
declare function objectMap<K extends string, V, NK extends string | number | symbol = K, NV = V>(obj: Record<K, V>, fn: (key: K, value: V) => [NK, NV] | undefined): Record<NK, NV>;
/**
* Type guard for any key, `k`.
* Marks `k` as a key of `T` if `k` is in `obj`.
*
* @category Object
* @param obj object to query for key `k`
* @param k key to check existence in `obj`
*/
declare function isKeyOf<T extends object>(obj: T, k: keyof any): k is keyof T;
/**
* Strict typed `Object.keys`
*
* @category Object
*/
declare function objectKeys<T extends object>(obj: T): (`${keyof T & undefined}` | `${keyof T & null}` | `${keyof T & string}` | `${keyof T & number}` | `${keyof T & false}` | `${keyof T & true}`)[];
/**
* Strict typed `Object.entries`
*
* @category Object
*/
declare function objectEntries<T extends object>(obj: T): [keyof T, T[keyof T]][];
/**
* Deep merge
*
* The first argument is the target object, the rest are the sources.
* The target object will be mutated and returned.
*
* @category Object
*/
declare function deepMerge<T extends object = object, S extends object = T>(target: T, ...sources: S[]): DeepMerge<T, S>;
/**
* Deep merge
*
* Differs from `deepMerge` in that it merges arrays instead of overriding them.
*
* The first argument is the target object, the rest are the sources.
* The target object will be mutated and returned.
*
* @category Object
*/
declare function deepMergeWithArray<T extends object = object, S extends object = T>(target: T, ...sources: S[]): DeepMerge<T, S>;
/**
* Create a new subset object by giving keys
*
* @category Object
*/
declare function objectPick<O extends object, T extends keyof O>(obj: O, keys: T[], omitUndefined?: boolean): Pick<O, T>;
/**
* Clear undefined fields from an object. It mutates the object
*
* @category Object
*/
declare function clearUndefined<T extends object>(obj: T): T;
/**
* Determines whether an object has a property with the specified name
*
* @see https://eslint.org/docs/rules/no-prototype-builtins
* @category Object
*/
declare function hasOwnProperty<T>(obj: T, v: PropertyKey): boolean;
interface SingletonPromiseReturn<T> {
(): Promise<T>;
/**
* Reset current staled promise.
* Await it to have proper shutdown.
*/
reset: () => Promise<void>;
}
/**
* Create singleton promise function
*
* @category Promise
*/
declare function createSingletonPromise<T>(fn: () => Promise<T>): SingletonPromiseReturn<T>;
/**
* Promised `setTimeout`
*
* @category Promise
*/
declare function sleep(ms: number, callback?: Fn<any>): Promise<void>;
/**
* Create a promise lock
*
* @category Promise
* @example
* ```
* const lock = createPromiseLock()
*
* lock.run(async () => {
* await doSomething()
* })
*
* // in anther context:
* await lock.wait() // it will wait all tasking finished
* ```
*/
declare function createPromiseLock(): {
run<T = void>(fn: () => Promise<T>): Promise<T>;
wait(): Promise<void>;
isWaiting(): boolean;
clear(): void;
};
/**
* Promise with `resolve` and `reject` methods of itself
*/
interface ControlledPromise<T = void> extends Promise<T> {
resolve: (value: T | PromiseLike<T>) => void;
reject: (reason?: any) => void;
}
/**
* Return a Promise with `resolve` and `reject` methods
*
* @category Promise
* @example
* ```
* const promise = createControlledPromise()
*
* await promise
*
* // in anther context:
* promise.resolve(data)
* ```
*/
declare function createControlledPromise<T>(): ControlledPromise<T>;
interface CancelOptions {
upcomingOnly?: boolean;
}
interface Cancel {
cancel: (options?: CancelOptions) => void;
}
interface NoReturn<T extends (...args: any[]) => any> {
(...args: Parameters<T>): void;
}
interface ThrottleOptions {
noTrailing?: boolean;
noLeading?: boolean;
debounceMode?: boolean;
}
interface DebounceOptions {
atBegin?: boolean;
}
type throttle<T extends (...args: any[]) => any> = NoReturn<T> & Cancel;
/**
* Throttle execution of a function. Especially useful for rate limiting
* execution of handlers on events like resize and scroll.
*
* @param delay
* A zero-or-greater delay in milliseconds. For event callbacks, values around
* 100 or 250 (or even higher) are most useful.
*
* @param callback
* A function to be executed after delay milliseconds. The `this` context and
* all arguments are passed through, as-is, to `callback` when the
* throttled-function is executed.
*
* @param options
* An object to configure options.
*
* @param options.noTrailing
* Optional, defaults to false. If noTrailing is true, callback will only execute
* every `delay` milliseconds while the throttled-function is being called. If
* noTrailing is false or unspecified, callback will be executed one final time
* after the last throttled-function call. (After the throttled-function has not
* been called for `delay` milliseconds, the internal counter is reset)
*
* @param options.noLeading
* Optional, defaults to false. If noLeading is false, the first throttled-function
* call will execute callback immediately. If noLeading is true, the first the
* callback execution will be skipped. It should be noted that callback will never
* executed if both noLeading = true and noTrailing = true.
*
* @param options.debounceMode If `debounceMode` is true (at begin), schedule
* `callback` to execute after `delay` ms. If `debounceMode` is false (at end),
* schedule `callback` to execute after `delay` ms.
*
* @return
* A new, throttled, function.
*/
declare function throttle<T extends (...args: any[]) => any>(
delay: number,
callback: T,
options?: ThrottleOptions,
): throttle<T>;
type debounce<T extends (...args: any[]) => any> = NoReturn<T> & Cancel;
/**
* Debounce execution of a function. Debouncing, unlike throttling,
* guarantees that a function is only executed a single time, either at the
* very beginning of a series of calls, or at the very end.
*
* @param delay
* A zero-or-greater delay in milliseconds. For event callbacks, values around
* 100 or 250 (or even higher) are most useful.
*
* @param callback
* A function to be executed after delay milliseconds. The `this` context and
* all arguments are passed through, as-is, to `callback` when the
* debounced-function is executed.
*
* @param options
* An object to configure options.
*
* @param options.atBegin
* If atBegin is false or unspecified, callback will only be executed `delay`
* milliseconds after the last debounced-function call. If atBegin is true,
* callback will be executed only at the first debounced-function call. (After
* the throttled-function has not been called for `delay` milliseconds, the
* internal counter is reset).
*
* @return
* A new, debounced function.
*/
declare function debounce<T extends (...args: any[]) => any>(
delay: number,
callback: T,
options?: DebounceOptions,
): debounce<T>;
interface POptions {
/**
* How many promises are resolved at the same time.
*/
concurrency?: number | undefined;
}
declare class PInstance<T = any> extends Promise<Awaited<T>[]> {
items: Iterable<T>;
options?: POptions | undefined;
private promises;
get promise(): Promise<Awaited<T>[]>;
constructor(items?: Iterable<T>, options?: POptions | undefined);
add(...args: (T | Promise<T>)[]): void;
map<U>(fn: (value: Awaited<T>, index: number) => U): PInstance<Promise<U>>;
filter(fn: (value: Awaited<T>, index: number) => boolean | Promise<boolean>): PInstance<Promise<T>>;
forEach(fn: (value: Awaited<T>, index: number) => void): Promise<void>;
reduce<U>(fn: (previousValue: U, currentValue: Awaited<T>, currentIndex: number, array: Awaited<T>[]) => U, initialValue: U): Promise<U>;
clear(): void;
then(fn?: () => PromiseLike<any>): Promise<any>;
catch(fn?: (err: unknown) => PromiseLike<any>): Promise<any>;
finally(fn?: () => void): Promise<Awaited<T>[]>;
}
/**
* Utility for managing multiple promises.
*
* @see https://github.com/antfu/utils/tree/main/docs/p.md
* @category Promise
* @example
* ```
* import { p } from '@antfu/utils'
*
* const items = [1, 2, 3, 4, 5]
*
* await p(items)
* .map(async i => await multiply(i, 3))
* .filter(async i => await isEven(i))
* // [6, 12]
* ```
*/
declare function p<T = any>(items?: Iterable<T>, options?: POptions): PInstance<T>;
export { type ArgumentsType, type Arrayable, type Awaitable, type Constructor, type ControlledPromise, type DeepMerge, type ElementOf, type Fn, type MergeInsertions, type Nullable, type PartitionFilter, type SingletonPromiseReturn, type UnionToIntersection, assert, at, batchInvoke, capitalize, clamp, clampArrayRange, clearUndefined, createControlledPromise, createPromiseLock, createSingletonPromise, debounce, deepMerge, deepMergeWithArray, ensurePrefix, ensureSuffix, flattenArrayable, getTypeName, hasOwnProperty, invoke, isBoolean, isBrowser, isDate, isDeepEqual, isDef, isFunction, isKeyOf, isNull, isNumber, isObject, isRegExp, isString, isTruthy, isUndefined, isWindow, last, lerp, mergeArrayable, move, noNull, noop, notNullish, notUndefined, objectEntries, objectKeys, objectMap, objectPick, p, partition, randomStr, range, remap, remove, sample, shuffle, slash, sleep, sum, tap, template, throttle, timestamp, toArray, toString, unindent, uniq, uniqueBy };

View File

@@ -1,614 +0,0 @@
/**
* Promise, or maybe not
*/
type Awaitable<T> = T | PromiseLike<T>;
/**
* Null or whatever
*/
type Nullable<T> = T | null | undefined;
/**
* Array, or not yet
*/
type Arrayable<T> = T | Array<T>;
/**
* Function
*/
type Fn<T = void> = () => T;
/**
* Constructor
*/
type Constructor<T = void> = new (...args: any[]) => T;
/**
* Infers the element type of an array
*/
type ElementOf<T> = T extends (infer E)[] ? E : never;
/**
* Defines an intersection type of all union items.
*
* @param U Union of any types that will be intersected.
* @returns U items intersected
* @see https://stackoverflow.com/a/50375286/9259330
*/
type UnionToIntersection<U> = (U extends unknown ? (k: U) => void : never) extends ((k: infer I) => void) ? I : never;
/**
* Infers the arguments type of a function
*/
type ArgumentsType<T> = T extends ((...args: infer A) => any) ? A : never;
type MergeInsertions<T> = T extends object ? {
[K in keyof T]: MergeInsertions<T[K]>;
} : T;
type DeepMerge<F, S> = MergeInsertions<{
[K in keyof F | keyof S]: K extends keyof S & keyof F ? DeepMerge<F[K], S[K]> : K extends keyof S ? S[K] : K extends keyof F ? F[K] : never;
}>;
/**
* Convert `Arrayable<T>` to `Array<T>`
*
* @category Array
*/
declare function toArray<T>(array?: Nullable<Arrayable<T>>): Array<T>;
/**
* Convert `Arrayable<T>` to `Array<T>` and flatten it
*
* @category Array
*/
declare function flattenArrayable<T>(array?: Nullable<Arrayable<T | Array<T>>>): Array<T>;
/**
* Use rest arguments to merge arrays
*
* @category Array
*/
declare function mergeArrayable<T>(...args: Nullable<Arrayable<T>>[]): Array<T>;
type PartitionFilter<T> = (i: T, idx: number, arr: readonly T[]) => any;
/**
* Divide an array into two parts by a filter function
*
* @category Array
* @example const [odd, even] = partition([1, 2, 3, 4], i => i % 2 != 0)
*/
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>): [T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>): [T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>): [T[], T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>, f4: PartitionFilter<T>): [T[], T[], T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>, f4: PartitionFilter<T>, f5: PartitionFilter<T>): [T[], T[], T[], T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>, f4: PartitionFilter<T>, f5: PartitionFilter<T>, f6: PartitionFilter<T>): [T[], T[], T[], T[], T[], T[], T[]];
/**
* Unique an Array
*
* @category Array
*/
declare function uniq<T>(array: readonly T[]): T[];
/**
* Unique an Array by a custom equality function
*
* @category Array
*/
declare function uniqueBy<T>(array: readonly T[], equalFn: (a: any, b: any) => boolean): T[];
/**
* Get last item
*
* @category Array
*/
declare function last(array: readonly []): undefined;
declare function last<T>(array: readonly T[]): T;
/**
* Remove an item from Array
*
* @category Array
*/
declare function remove<T>(array: T[], value: T): boolean;
/**
* Get nth item of Array. Negative for backward
*
* @category Array
*/
declare function at(array: readonly [], index: number): undefined;
declare function at<T>(array: readonly T[], index: number): T;
/**
* Genrate a range array of numbers. The `stop` is exclusive.
*
* @category Array
*/
declare function range(stop: number): number[];
declare function range(start: number, stop: number, step?: number): number[];
/**
* Move element in an Array
*
* @category Array
* @param arr
* @param from
* @param to
*/
declare function move<T>(arr: T[], from: number, to: number): T[];
/**
* Clamp a number to the index range of an array
*
* @category Array
*/
declare function clampArrayRange(n: number, arr: readonly unknown[]): number;
/**
* Get random item(s) from an array
*
* @param arr
* @param quantity - quantity of random items which will be returned
*/
declare function sample<T>(arr: T[], quantity: number): T[];
/**
* Shuffle an array. This function mutates the array.
*
* @category Array
*/
declare function shuffle<T>(array: T[]): T[];
declare function assert(condition: boolean, message: string): asserts condition;
declare const toString: (v: any) => string;
declare function getTypeName(v: any): string;
declare function noop(): void;
declare function isDeepEqual(value1: any, value2: any): boolean;
/**
* Type guard to filter out null-ish values
*
* @category Guards
* @example array.filter(notNullish)
*/
declare function notNullish<T>(v: T | null | undefined): v is NonNullable<T>;
/**
* Type guard to filter out null values
*
* @category Guards
* @example array.filter(noNull)
*/
declare function noNull<T>(v: T | null): v is Exclude<T, null>;
/**
* Type guard to filter out null-ish values
*
* @category Guards
* @example array.filter(notUndefined)
*/
declare function notUndefined<T>(v: T): v is Exclude<T, undefined>;
/**
* Type guard to filter out falsy values
*
* @category Guards
* @example array.filter(isTruthy)
*/
declare function isTruthy<T>(v: T): v is NonNullable<T>;
declare const isDef: <T = any>(val?: T) => val is T;
declare const isBoolean: (val: any) => val is boolean;
declare const isFunction: <T extends Function>(val: any) => val is T;
declare const isNumber: (val: any) => val is number;
declare const isString: (val: unknown) => val is string;
declare const isObject: (val: any) => val is object;
declare const isUndefined: (val: any) => val is undefined;
declare const isNull: (val: any) => val is null;
declare const isRegExp: (val: any) => val is RegExp;
declare const isDate: (val: any) => val is Date;
declare const isWindow: (val: any) => boolean;
declare const isBrowser: boolean;
declare function clamp(n: number, min: number, max: number): number;
declare function sum(...args: number[] | number[][]): number;
/**
* Linearly interpolates between `min` and `max` based on `t`
*
* @category Math
* @param min The minimum value
* @param max The maximum value
* @param t The interpolation value clamped between 0 and 1
* @example
* ```
* const value = lerp(0, 2, 0.5) // value will be 1
* ```
*/
declare function lerp(min: number, max: number, t: number): number;
/**
* Linearly remaps a clamped value from its source range [`inMin`, `inMax`] to the destination range [`outMin`, `outMax`]
*
* @category Math
* @example
* ```
* const value = remap(0.5, 0, 1, 200, 400) // value will be 300
* ```
*/
declare function remap(n: number, inMin: number, inMax: number, outMin: number, outMax: number): number;
/**
* Replace backslash to slash
*
* @category String
*/
declare function slash(str: string): string;
/**
* Ensure prefix of a string
*
* @category String
*/
declare function ensurePrefix(prefix: string, str: string): string;
/**
* Ensure suffix of a string
*
* @category String
*/
declare function ensureSuffix(suffix: string, str: string): string;
/**
* Dead simple template engine, just like Python's `.format()`
* Support passing variables as either in index based or object/name based approach
* While using object/name based approach, you can pass a fallback value as the third argument
*
* @category String
* @example
* ```
* const result = template(
* 'Hello {0}! My name is {1}.',
* 'Inès',
* 'Anthony'
* ) // Hello Inès! My name is Anthony.
* ```
*
* ```
* const result = namedTemplate(
* '{greet}! My name is {name}.',
* { greet: 'Hello', name: 'Anthony' }
* ) // Hello! My name is Anthony.
* ```
*
* const result = namedTemplate(
* '{greet}! My name is {name}.',
* { greet: 'Hello' }, // name isn't passed hence fallback will be used for name
* 'placeholder'
* ) // Hello! My name is placeholder.
* ```
*/
declare function template(str: string, object: Record<string | number, any>, fallback?: string | ((key: string) => string)): string;
declare function template(str: string, ...args: (string | number | bigint | undefined | null)[]): string;
/**
* Generate a random string
* @category String
*/
declare function randomStr(size?: number, dict?: string): string;
/**
* First letter uppercase, other lowercase
* @category string
* @example
* ```
* capitalize('hello') => 'Hello'
* ```
*/
declare function capitalize(str: string): string;
/**
* Remove common leading whitespace from a template string.
* Will also remove empty lines at the beginning and end.
* @category string
* @example
* ```ts
* const str = unindent`
* if (a) {
* b()
* }
* `
*/
declare function unindent(str: TemplateStringsArray | string): string;
declare const timestamp: () => number;
/**
* Call every function in an array
*/
declare function batchInvoke(functions: Nullable<Fn>[]): void;
/**
* Call the function
*/
declare function invoke(fn: Fn): void;
/**
* Pass the value through the callback, and return the value
*
* @example
* ```
* function createUser(name: string): User {
* return tap(new User, user => {
* user.name = name
* })
* }
* ```
*/
declare function tap<T>(value: T, callback: (value: T) => void): T;
/**
* Map key/value pairs for an object, and construct a new one
*
*
* @category Object
*
* Transform:
* @example
* ```
* objectMap({ a: 1, b: 2 }, (k, v) => [k.toString().toUpperCase(), v.toString()])
* // { A: '1', B: '2' }
* ```
*
* Swap key/value:
* @example
* ```
* objectMap({ a: 1, b: 2 }, (k, v) => [v, k])
* // { 1: 'a', 2: 'b' }
* ```
*
* Filter keys:
* @example
* ```
* objectMap({ a: 1, b: 2 }, (k, v) => k === 'a' ? undefined : [k, v])
* // { b: 2 }
* ```
*/
declare function objectMap<K extends string, V, NK extends string | number | symbol = K, NV = V>(obj: Record<K, V>, fn: (key: K, value: V) => [NK, NV] | undefined): Record<NK, NV>;
/**
* Type guard for any key, `k`.
* Marks `k` as a key of `T` if `k` is in `obj`.
*
* @category Object
* @param obj object to query for key `k`
* @param k key to check existence in `obj`
*/
declare function isKeyOf<T extends object>(obj: T, k: keyof any): k is keyof T;
/**
* Strict typed `Object.keys`
*
* @category Object
*/
declare function objectKeys<T extends object>(obj: T): (`${keyof T & undefined}` | `${keyof T & null}` | `${keyof T & string}` | `${keyof T & number}` | `${keyof T & false}` | `${keyof T & true}`)[];
/**
* Strict typed `Object.entries`
*
* @category Object
*/
declare function objectEntries<T extends object>(obj: T): [keyof T, T[keyof T]][];
/**
* Deep merge
*
* The first argument is the target object, the rest are the sources.
* The target object will be mutated and returned.
*
* @category Object
*/
declare function deepMerge<T extends object = object, S extends object = T>(target: T, ...sources: S[]): DeepMerge<T, S>;
/**
* Deep merge
*
* Differs from `deepMerge` in that it merges arrays instead of overriding them.
*
* The first argument is the target object, the rest are the sources.
* The target object will be mutated and returned.
*
* @category Object
*/
declare function deepMergeWithArray<T extends object = object, S extends object = T>(target: T, ...sources: S[]): DeepMerge<T, S>;
/**
* Create a new subset object by giving keys
*
* @category Object
*/
declare function objectPick<O extends object, T extends keyof O>(obj: O, keys: T[], omitUndefined?: boolean): Pick<O, T>;
/**
* Clear undefined fields from an object. It mutates the object
*
* @category Object
*/
declare function clearUndefined<T extends object>(obj: T): T;
/**
* Determines whether an object has a property with the specified name
*
* @see https://eslint.org/docs/rules/no-prototype-builtins
* @category Object
*/
declare function hasOwnProperty<T>(obj: T, v: PropertyKey): boolean;
interface SingletonPromiseReturn<T> {
(): Promise<T>;
/**
* Reset current staled promise.
* Await it to have proper shutdown.
*/
reset: () => Promise<void>;
}
/**
* Create singleton promise function
*
* @category Promise
*/
declare function createSingletonPromise<T>(fn: () => Promise<T>): SingletonPromiseReturn<T>;
/**
* Promised `setTimeout`
*
* @category Promise
*/
declare function sleep(ms: number, callback?: Fn<any>): Promise<void>;
/**
* Create a promise lock
*
* @category Promise
* @example
* ```
* const lock = createPromiseLock()
*
* lock.run(async () => {
* await doSomething()
* })
*
* // in anther context:
* await lock.wait() // it will wait all tasking finished
* ```
*/
declare function createPromiseLock(): {
run<T = void>(fn: () => Promise<T>): Promise<T>;
wait(): Promise<void>;
isWaiting(): boolean;
clear(): void;
};
/**
* Promise with `resolve` and `reject` methods of itself
*/
interface ControlledPromise<T = void> extends Promise<T> {
resolve: (value: T | PromiseLike<T>) => void;
reject: (reason?: any) => void;
}
/**
* Return a Promise with `resolve` and `reject` methods
*
* @category Promise
* @example
* ```
* const promise = createControlledPromise()
*
* await promise
*
* // in anther context:
* promise.resolve(data)
* ```
*/
declare function createControlledPromise<T>(): ControlledPromise<T>;
interface CancelOptions {
upcomingOnly?: boolean;
}
interface Cancel {
cancel: (options?: CancelOptions) => void;
}
interface NoReturn<T extends (...args: any[]) => any> {
(...args: Parameters<T>): void;
}
interface ThrottleOptions {
noTrailing?: boolean;
noLeading?: boolean;
debounceMode?: boolean;
}
interface DebounceOptions {
atBegin?: boolean;
}
type throttle<T extends (...args: any[]) => any> = NoReturn<T> & Cancel;
/**
* Throttle execution of a function. Especially useful for rate limiting
* execution of handlers on events like resize and scroll.
*
* @param delay
* A zero-or-greater delay in milliseconds. For event callbacks, values around
* 100 or 250 (or even higher) are most useful.
*
* @param callback
* A function to be executed after delay milliseconds. The `this` context and
* all arguments are passed through, as-is, to `callback` when the
* throttled-function is executed.
*
* @param options
* An object to configure options.
*
* @param options.noTrailing
* Optional, defaults to false. If noTrailing is true, callback will only execute
* every `delay` milliseconds while the throttled-function is being called. If
* noTrailing is false or unspecified, callback will be executed one final time
* after the last throttled-function call. (After the throttled-function has not
* been called for `delay` milliseconds, the internal counter is reset)
*
* @param options.noLeading
* Optional, defaults to false. If noLeading is false, the first throttled-function
* call will execute callback immediately. If noLeading is true, the first the
* callback execution will be skipped. It should be noted that callback will never
* executed if both noLeading = true and noTrailing = true.
*
* @param options.debounceMode If `debounceMode` is true (at begin), schedule
* `callback` to execute after `delay` ms. If `debounceMode` is false (at end),
* schedule `callback` to execute after `delay` ms.
*
* @return
* A new, throttled, function.
*/
declare function throttle<T extends (...args: any[]) => any>(
delay: number,
callback: T,
options?: ThrottleOptions,
): throttle<T>;
type debounce<T extends (...args: any[]) => any> = NoReturn<T> & Cancel;
/**
* Debounce execution of a function. Debouncing, unlike throttling,
* guarantees that a function is only executed a single time, either at the
* very beginning of a series of calls, or at the very end.
*
* @param delay
* A zero-or-greater delay in milliseconds. For event callbacks, values around
* 100 or 250 (or even higher) are most useful.
*
* @param callback
* A function to be executed after delay milliseconds. The `this` context and
* all arguments are passed through, as-is, to `callback` when the
* debounced-function is executed.
*
* @param options
* An object to configure options.
*
* @param options.atBegin
* If atBegin is false or unspecified, callback will only be executed `delay`
* milliseconds after the last debounced-function call. If atBegin is true,
* callback will be executed only at the first debounced-function call. (After
* the throttled-function has not been called for `delay` milliseconds, the
* internal counter is reset).
*
* @return
* A new, debounced function.
*/
declare function debounce<T extends (...args: any[]) => any>(
delay: number,
callback: T,
options?: DebounceOptions,
): debounce<T>;
interface POptions {
/**
* How many promises are resolved at the same time.
*/
concurrency?: number | undefined;
}
declare class PInstance<T = any> extends Promise<Awaited<T>[]> {
items: Iterable<T>;
options?: POptions | undefined;
private promises;
get promise(): Promise<Awaited<T>[]>;
constructor(items?: Iterable<T>, options?: POptions | undefined);
add(...args: (T | Promise<T>)[]): void;
map<U>(fn: (value: Awaited<T>, index: number) => U): PInstance<Promise<U>>;
filter(fn: (value: Awaited<T>, index: number) => boolean | Promise<boolean>): PInstance<Promise<T>>;
forEach(fn: (value: Awaited<T>, index: number) => void): Promise<void>;
reduce<U>(fn: (previousValue: U, currentValue: Awaited<T>, currentIndex: number, array: Awaited<T>[]) => U, initialValue: U): Promise<U>;
clear(): void;
then(fn?: () => PromiseLike<any>): Promise<any>;
catch(fn?: (err: unknown) => PromiseLike<any>): Promise<any>;
finally(fn?: () => void): Promise<Awaited<T>[]>;
}
/**
* Utility for managing multiple promises.
*
* @see https://github.com/antfu/utils/tree/main/docs/p.md
* @category Promise
* @example
* ```
* import { p } from '@antfu/utils'
*
* const items = [1, 2, 3, 4, 5]
*
* await p(items)
* .map(async i => await multiply(i, 3))
* .filter(async i => await isEven(i))
* // [6, 12]
* ```
*/
declare function p<T = any>(items?: Iterable<T>, options?: POptions): PInstance<T>;
export { type ArgumentsType, type Arrayable, type Awaitable, type Constructor, type ControlledPromise, type DeepMerge, type ElementOf, type Fn, type MergeInsertions, type Nullable, type PartitionFilter, type SingletonPromiseReturn, type UnionToIntersection, assert, at, batchInvoke, capitalize, clamp, clampArrayRange, clearUndefined, createControlledPromise, createPromiseLock, createSingletonPromise, debounce, deepMerge, deepMergeWithArray, ensurePrefix, ensureSuffix, flattenArrayable, getTypeName, hasOwnProperty, invoke, isBoolean, isBrowser, isDate, isDeepEqual, isDef, isFunction, isKeyOf, isNull, isNumber, isObject, isRegExp, isString, isTruthy, isUndefined, isWindow, last, lerp, mergeArrayable, move, noNull, noop, notNullish, notUndefined, objectEntries, objectKeys, objectMap, objectPick, p, partition, randomStr, range, remap, remove, sample, shuffle, slash, sleep, sum, tap, template, throttle, timestamp, toArray, toString, unindent, uniq, uniqueBy };

View File

@@ -1,614 +0,0 @@
/**
* Promise, or maybe not
*/
type Awaitable<T> = T | PromiseLike<T>;
/**
* Null or whatever
*/
type Nullable<T> = T | null | undefined;
/**
* Array, or not yet
*/
type Arrayable<T> = T | Array<T>;
/**
* Function
*/
type Fn<T = void> = () => T;
/**
* Constructor
*/
type Constructor<T = void> = new (...args: any[]) => T;
/**
* Infers the element type of an array
*/
type ElementOf<T> = T extends (infer E)[] ? E : never;
/**
* Defines an intersection type of all union items.
*
* @param U Union of any types that will be intersected.
* @returns U items intersected
* @see https://stackoverflow.com/a/50375286/9259330
*/
type UnionToIntersection<U> = (U extends unknown ? (k: U) => void : never) extends ((k: infer I) => void) ? I : never;
/**
* Infers the arguments type of a function
*/
type ArgumentsType<T> = T extends ((...args: infer A) => any) ? A : never;
type MergeInsertions<T> = T extends object ? {
[K in keyof T]: MergeInsertions<T[K]>;
} : T;
type DeepMerge<F, S> = MergeInsertions<{
[K in keyof F | keyof S]: K extends keyof S & keyof F ? DeepMerge<F[K], S[K]> : K extends keyof S ? S[K] : K extends keyof F ? F[K] : never;
}>;
/**
* Convert `Arrayable<T>` to `Array<T>`
*
* @category Array
*/
declare function toArray<T>(array?: Nullable<Arrayable<T>>): Array<T>;
/**
* Convert `Arrayable<T>` to `Array<T>` and flatten it
*
* @category Array
*/
declare function flattenArrayable<T>(array?: Nullable<Arrayable<T | Array<T>>>): Array<T>;
/**
* Use rest arguments to merge arrays
*
* @category Array
*/
declare function mergeArrayable<T>(...args: Nullable<Arrayable<T>>[]): Array<T>;
type PartitionFilter<T> = (i: T, idx: number, arr: readonly T[]) => any;
/**
* Divide an array into two parts by a filter function
*
* @category Array
* @example const [odd, even] = partition([1, 2, 3, 4], i => i % 2 != 0)
*/
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>): [T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>): [T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>): [T[], T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>, f4: PartitionFilter<T>): [T[], T[], T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>, f4: PartitionFilter<T>, f5: PartitionFilter<T>): [T[], T[], T[], T[], T[], T[]];
declare function partition<T>(array: readonly T[], f1: PartitionFilter<T>, f2: PartitionFilter<T>, f3: PartitionFilter<T>, f4: PartitionFilter<T>, f5: PartitionFilter<T>, f6: PartitionFilter<T>): [T[], T[], T[], T[], T[], T[], T[]];
/**
* Unique an Array
*
* @category Array
*/
declare function uniq<T>(array: readonly T[]): T[];
/**
* Unique an Array by a custom equality function
*
* @category Array
*/
declare function uniqueBy<T>(array: readonly T[], equalFn: (a: any, b: any) => boolean): T[];
/**
* Get last item
*
* @category Array
*/
declare function last(array: readonly []): undefined;
declare function last<T>(array: readonly T[]): T;
/**
* Remove an item from Array
*
* @category Array
*/
declare function remove<T>(array: T[], value: T): boolean;
/**
* Get nth item of Array. Negative for backward
*
* @category Array
*/
declare function at(array: readonly [], index: number): undefined;
declare function at<T>(array: readonly T[], index: number): T;
/**
* Genrate a range array of numbers. The `stop` is exclusive.
*
* @category Array
*/
declare function range(stop: number): number[];
declare function range(start: number, stop: number, step?: number): number[];
/**
* Move element in an Array
*
* @category Array
* @param arr
* @param from
* @param to
*/
declare function move<T>(arr: T[], from: number, to: number): T[];
/**
* Clamp a number to the index range of an array
*
* @category Array
*/
declare function clampArrayRange(n: number, arr: readonly unknown[]): number;
/**
* Get random item(s) from an array
*
* @param arr
* @param quantity - quantity of random items which will be returned
*/
declare function sample<T>(arr: T[], quantity: number): T[];
/**
* Shuffle an array. This function mutates the array.
*
* @category Array
*/
declare function shuffle<T>(array: T[]): T[];
declare function assert(condition: boolean, message: string): asserts condition;
declare const toString: (v: any) => string;
declare function getTypeName(v: any): string;
declare function noop(): void;
declare function isDeepEqual(value1: any, value2: any): boolean;
/**
* Type guard to filter out null-ish values
*
* @category Guards
* @example array.filter(notNullish)
*/
declare function notNullish<T>(v: T | null | undefined): v is NonNullable<T>;
/**
* Type guard to filter out null values
*
* @category Guards
* @example array.filter(noNull)
*/
declare function noNull<T>(v: T | null): v is Exclude<T, null>;
/**
* Type guard to filter out null-ish values
*
* @category Guards
* @example array.filter(notUndefined)
*/
declare function notUndefined<T>(v: T): v is Exclude<T, undefined>;
/**
* Type guard to filter out falsy values
*
* @category Guards
* @example array.filter(isTruthy)
*/
declare function isTruthy<T>(v: T): v is NonNullable<T>;
declare const isDef: <T = any>(val?: T) => val is T;
declare const isBoolean: (val: any) => val is boolean;
declare const isFunction: <T extends Function>(val: any) => val is T;
declare const isNumber: (val: any) => val is number;
declare const isString: (val: unknown) => val is string;
declare const isObject: (val: any) => val is object;
declare const isUndefined: (val: any) => val is undefined;
declare const isNull: (val: any) => val is null;
declare const isRegExp: (val: any) => val is RegExp;
declare const isDate: (val: any) => val is Date;
declare const isWindow: (val: any) => boolean;
declare const isBrowser: boolean;
declare function clamp(n: number, min: number, max: number): number;
declare function sum(...args: number[] | number[][]): number;
/**
* Linearly interpolates between `min` and `max` based on `t`
*
* @category Math
* @param min The minimum value
* @param max The maximum value
* @param t The interpolation value clamped between 0 and 1
* @example
* ```
* const value = lerp(0, 2, 0.5) // value will be 1
* ```
*/
declare function lerp(min: number, max: number, t: number): number;
/**
* Linearly remaps a clamped value from its source range [`inMin`, `inMax`] to the destination range [`outMin`, `outMax`]
*
* @category Math
* @example
* ```
* const value = remap(0.5, 0, 1, 200, 400) // value will be 300
* ```
*/
declare function remap(n: number, inMin: number, inMax: number, outMin: number, outMax: number): number;
/**
* Replace backslash to slash
*
* @category String
*/
declare function slash(str: string): string;
/**
* Ensure prefix of a string
*
* @category String
*/
declare function ensurePrefix(prefix: string, str: string): string;
/**
* Ensure suffix of a string
*
* @category String
*/
declare function ensureSuffix(suffix: string, str: string): string;
/**
* Dead simple template engine, just like Python's `.format()`
* Support passing variables as either in index based or object/name based approach
* While using object/name based approach, you can pass a fallback value as the third argument
*
* @category String
* @example
* ```
* const result = template(
* 'Hello {0}! My name is {1}.',
* 'Inès',
* 'Anthony'
* ) // Hello Inès! My name is Anthony.
* ```
*
* ```
* const result = namedTemplate(
* '{greet}! My name is {name}.',
* { greet: 'Hello', name: 'Anthony' }
* ) // Hello! My name is Anthony.
* ```
*
* const result = namedTemplate(
* '{greet}! My name is {name}.',
* { greet: 'Hello' }, // name isn't passed hence fallback will be used for name
* 'placeholder'
* ) // Hello! My name is placeholder.
* ```
*/
declare function template(str: string, object: Record<string | number, any>, fallback?: string | ((key: string) => string)): string;
declare function template(str: string, ...args: (string | number | bigint | undefined | null)[]): string;
/**
* Generate a random string
* @category String
*/
declare function randomStr(size?: number, dict?: string): string;
/**
* First letter uppercase, other lowercase
* @category string
* @example
* ```
* capitalize('hello') => 'Hello'
* ```
*/
declare function capitalize(str: string): string;
/**
* Remove common leading whitespace from a template string.
* Will also remove empty lines at the beginning and end.
* @category string
* @example
* ```ts
* const str = unindent`
* if (a) {
* b()
* }
* `
*/
declare function unindent(str: TemplateStringsArray | string): string;
declare const timestamp: () => number;
/**
* Call every function in an array
*/
declare function batchInvoke(functions: Nullable<Fn>[]): void;
/**
* Call the function
*/
declare function invoke(fn: Fn): void;
/**
* Pass the value through the callback, and return the value
*
* @example
* ```
* function createUser(name: string): User {
* return tap(new User, user => {
* user.name = name
* })
* }
* ```
*/
declare function tap<T>(value: T, callback: (value: T) => void): T;
/**
* Map key/value pairs for an object, and construct a new one
*
*
* @category Object
*
* Transform:
* @example
* ```
* objectMap({ a: 1, b: 2 }, (k, v) => [k.toString().toUpperCase(), v.toString()])
* // { A: '1', B: '2' }
* ```
*
* Swap key/value:
* @example
* ```
* objectMap({ a: 1, b: 2 }, (k, v) => [v, k])
* // { 1: 'a', 2: 'b' }
* ```
*
* Filter keys:
* @example
* ```
* objectMap({ a: 1, b: 2 }, (k, v) => k === 'a' ? undefined : [k, v])
* // { b: 2 }
* ```
*/
declare function objectMap<K extends string, V, NK extends string | number | symbol = K, NV = V>(obj: Record<K, V>, fn: (key: K, value: V) => [NK, NV] | undefined): Record<NK, NV>;
/**
* Type guard for any key, `k`.
* Marks `k` as a key of `T` if `k` is in `obj`.
*
* @category Object
* @param obj object to query for key `k`
* @param k key to check existence in `obj`
*/
declare function isKeyOf<T extends object>(obj: T, k: keyof any): k is keyof T;
/**
* Strict typed `Object.keys`
*
* @category Object
*/
declare function objectKeys<T extends object>(obj: T): (`${keyof T & undefined}` | `${keyof T & null}` | `${keyof T & string}` | `${keyof T & number}` | `${keyof T & false}` | `${keyof T & true}`)[];
/**
* Strict typed `Object.entries`
*
* @category Object
*/
declare function objectEntries<T extends object>(obj: T): [keyof T, T[keyof T]][];
/**
* Deep merge
*
* The first argument is the target object, the rest are the sources.
* The target object will be mutated and returned.
*
* @category Object
*/
declare function deepMerge<T extends object = object, S extends object = T>(target: T, ...sources: S[]): DeepMerge<T, S>;
/**
* Deep merge
*
* Differs from `deepMerge` in that it merges arrays instead of overriding them.
*
* The first argument is the target object, the rest are the sources.
* The target object will be mutated and returned.
*
* @category Object
*/
declare function deepMergeWithArray<T extends object = object, S extends object = T>(target: T, ...sources: S[]): DeepMerge<T, S>;
/**
* Create a new subset object by giving keys
*
* @category Object
*/
declare function objectPick<O extends object, T extends keyof O>(obj: O, keys: T[], omitUndefined?: boolean): Pick<O, T>;
/**
* Clear undefined fields from an object. It mutates the object
*
* @category Object
*/
declare function clearUndefined<T extends object>(obj: T): T;
/**
* Determines whether an object has a property with the specified name
*
* @see https://eslint.org/docs/rules/no-prototype-builtins
* @category Object
*/
declare function hasOwnProperty<T>(obj: T, v: PropertyKey): boolean;
interface SingletonPromiseReturn<T> {
(): Promise<T>;
/**
* Reset current staled promise.
* Await it to have proper shutdown.
*/
reset: () => Promise<void>;
}
/**
* Create singleton promise function
*
* @category Promise
*/
declare function createSingletonPromise<T>(fn: () => Promise<T>): SingletonPromiseReturn<T>;
/**
* Promised `setTimeout`
*
* @category Promise
*/
declare function sleep(ms: number, callback?: Fn<any>): Promise<void>;
/**
* Create a promise lock
*
* @category Promise
* @example
* ```
* const lock = createPromiseLock()
*
* lock.run(async () => {
* await doSomething()
* })
*
* // in anther context:
* await lock.wait() // it will wait all tasking finished
* ```
*/
declare function createPromiseLock(): {
run<T = void>(fn: () => Promise<T>): Promise<T>;
wait(): Promise<void>;
isWaiting(): boolean;
clear(): void;
};
/**
* Promise with `resolve` and `reject` methods of itself
*/
interface ControlledPromise<T = void> extends Promise<T> {
resolve: (value: T | PromiseLike<T>) => void;
reject: (reason?: any) => void;
}
/**
* Return a Promise with `resolve` and `reject` methods
*
* @category Promise
* @example
* ```
* const promise = createControlledPromise()
*
* await promise
*
* // in anther context:
* promise.resolve(data)
* ```
*/
declare function createControlledPromise<T>(): ControlledPromise<T>;
interface CancelOptions {
upcomingOnly?: boolean;
}
interface Cancel {
cancel: (options?: CancelOptions) => void;
}
interface NoReturn<T extends (...args: any[]) => any> {
(...args: Parameters<T>): void;
}
interface ThrottleOptions {
noTrailing?: boolean;
noLeading?: boolean;
debounceMode?: boolean;
}
interface DebounceOptions {
atBegin?: boolean;
}
type throttle<T extends (...args: any[]) => any> = NoReturn<T> & Cancel;
/**
* Throttle execution of a function. Especially useful for rate limiting
* execution of handlers on events like resize and scroll.
*
* @param delay
* A zero-or-greater delay in milliseconds. For event callbacks, values around
* 100 or 250 (or even higher) are most useful.
*
* @param callback
* A function to be executed after delay milliseconds. The `this` context and
* all arguments are passed through, as-is, to `callback` when the
* throttled-function is executed.
*
* @param options
* An object to configure options.
*
* @param options.noTrailing
* Optional, defaults to false. If noTrailing is true, callback will only execute
* every `delay` milliseconds while the throttled-function is being called. If
* noTrailing is false or unspecified, callback will be executed one final time
* after the last throttled-function call. (After the throttled-function has not
* been called for `delay` milliseconds, the internal counter is reset)
*
* @param options.noLeading
* Optional, defaults to false. If noLeading is false, the first throttled-function
* call will execute callback immediately. If noLeading is true, the first the
* callback execution will be skipped. It should be noted that callback will never
* executed if both noLeading = true and noTrailing = true.
*
* @param options.debounceMode If `debounceMode` is true (at begin), schedule
* `callback` to execute after `delay` ms. If `debounceMode` is false (at end),
* schedule `callback` to execute after `delay` ms.
*
* @return
* A new, throttled, function.
*/
declare function throttle<T extends (...args: any[]) => any>(
delay: number,
callback: T,
options?: ThrottleOptions,
): throttle<T>;
type debounce<T extends (...args: any[]) => any> = NoReturn<T> & Cancel;
/**
* Debounce execution of a function. Debouncing, unlike throttling,
* guarantees that a function is only executed a single time, either at the
* very beginning of a series of calls, or at the very end.
*
* @param delay
* A zero-or-greater delay in milliseconds. For event callbacks, values around
* 100 or 250 (or even higher) are most useful.
*
* @param callback
* A function to be executed after delay milliseconds. The `this` context and
* all arguments are passed through, as-is, to `callback` when the
* debounced-function is executed.
*
* @param options
* An object to configure options.
*
* @param options.atBegin
* If atBegin is false or unspecified, callback will only be executed `delay`
* milliseconds after the last debounced-function call. If atBegin is true,
* callback will be executed only at the first debounced-function call. (After
* the throttled-function has not been called for `delay` milliseconds, the
* internal counter is reset).
*
* @return
* A new, debounced function.
*/
declare function debounce<T extends (...args: any[]) => any>(
delay: number,
callback: T,
options?: DebounceOptions,
): debounce<T>;
interface POptions {
/**
* How many promises are resolved at the same time.
*/
concurrency?: number | undefined;
}
declare class PInstance<T = any> extends Promise<Awaited<T>[]> {
items: Iterable<T>;
options?: POptions | undefined;
private promises;
get promise(): Promise<Awaited<T>[]>;
constructor(items?: Iterable<T>, options?: POptions | undefined);
add(...args: (T | Promise<T>)[]): void;
map<U>(fn: (value: Awaited<T>, index: number) => U): PInstance<Promise<U>>;
filter(fn: (value: Awaited<T>, index: number) => boolean | Promise<boolean>): PInstance<Promise<T>>;
forEach(fn: (value: Awaited<T>, index: number) => void): Promise<void>;
reduce<U>(fn: (previousValue: U, currentValue: Awaited<T>, currentIndex: number, array: Awaited<T>[]) => U, initialValue: U): Promise<U>;
clear(): void;
then(fn?: () => PromiseLike<any>): Promise<any>;
catch(fn?: (err: unknown) => PromiseLike<any>): Promise<any>;
finally(fn?: () => void): Promise<Awaited<T>[]>;
}
/**
* Utility for managing multiple promises.
*
* @see https://github.com/antfu/utils/tree/main/docs/p.md
* @category Promise
* @example
* ```
* import { p } from '@antfu/utils'
*
* const items = [1, 2, 3, 4, 5]
*
* await p(items)
* .map(async i => await multiply(i, 3))
* .filter(async i => await isEven(i))
* // [6, 12]
* ```
*/
declare function p<T = any>(items?: Iterable<T>, options?: POptions): PInstance<T>;
export { type ArgumentsType, type Arrayable, type Awaitable, type Constructor, type ControlledPromise, type DeepMerge, type ElementOf, type Fn, type MergeInsertions, type Nullable, type PartitionFilter, type SingletonPromiseReturn, type UnionToIntersection, assert, at, batchInvoke, capitalize, clamp, clampArrayRange, clearUndefined, createControlledPromise, createPromiseLock, createSingletonPromise, debounce, deepMerge, deepMergeWithArray, ensurePrefix, ensureSuffix, flattenArrayable, getTypeName, hasOwnProperty, invoke, isBoolean, isBrowser, isDate, isDeepEqual, isDef, isFunction, isKeyOf, isNull, isNumber, isObject, isRegExp, isString, isTruthy, isUndefined, isWindow, last, lerp, mergeArrayable, move, noNull, noop, notNullish, notUndefined, objectEntries, objectKeys, objectMap, objectPick, p, partition, randomStr, range, remap, remove, sample, shuffle, slash, sleep, sum, tap, template, throttle, timestamp, toArray, toString, unindent, uniq, uniqueBy };

View File

@@ -1,777 +0,0 @@
function clamp(n, min, max) {
return Math.min(max, Math.max(min, n));
}
function sum(...args) {
return flattenArrayable(args).reduce((a, b) => a + b, 0);
}
function lerp(min, max, t) {
const interpolation = clamp(t, 0, 1);
return min + (max - min) * interpolation;
}
function remap(n, inMin, inMax, outMin, outMax) {
const interpolation = (n - inMin) / (inMax - inMin);
return lerp(outMin, outMax, interpolation);
}
function toArray(array) {
array = array ?? [];
return Array.isArray(array) ? array : [array];
}
function flattenArrayable(array) {
return toArray(array).flat(1);
}
function mergeArrayable(...args) {
return args.flatMap((i) => toArray(i));
}
function partition(array, ...filters) {
const result = Array.from({ length: filters.length + 1 }).fill(null).map(() => []);
array.forEach((e, idx, arr) => {
let i = 0;
for (const filter of filters) {
if (filter(e, idx, arr)) {
result[i].push(e);
return;
}
i += 1;
}
result[i].push(e);
});
return result;
}
function uniq(array) {
return Array.from(new Set(array));
}
function uniqueBy(array, equalFn) {
return array.reduce((acc, cur) => {
const index = acc.findIndex((item) => equalFn(cur, item));
if (index === -1)
acc.push(cur);
return acc;
}, []);
}
function last(array) {
return at(array, -1);
}
function remove(array, value) {
if (!array)
return false;
const index = array.indexOf(value);
if (index >= 0) {
array.splice(index, 1);
return true;
}
return false;
}
function at(array, index) {
const len = array.length;
if (!len)
return void 0;
if (index < 0)
index += len;
return array[index];
}
function range(...args) {
let start, stop, step;
if (args.length === 1) {
start = 0;
step = 1;
[stop] = args;
} else {
[start, stop, step = 1] = args;
}
const arr = [];
let current = start;
while (current < stop) {
arr.push(current);
current += step || 1;
}
return arr;
}
function move(arr, from, to) {
arr.splice(to, 0, arr.splice(from, 1)[0]);
return arr;
}
function clampArrayRange(n, arr) {
return clamp(n, 0, arr.length - 1);
}
function sample(arr, quantity) {
return Array.from({ length: quantity }, (_) => arr[Math.round(Math.random() * (arr.length - 1))]);
}
function shuffle(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
return array;
}
function assert(condition, message) {
if (!condition)
throw new Error(message);
}
const toString = (v) => Object.prototype.toString.call(v);
function getTypeName(v) {
if (v === null)
return "null";
const type = toString(v).slice(8, -1).toLowerCase();
return typeof v === "object" || typeof v === "function" ? type : typeof v;
}
function noop() {
}
function isDeepEqual(value1, value2) {
const type1 = getTypeName(value1);
const type2 = getTypeName(value2);
if (type1 !== type2)
return false;
if (type1 === "array") {
if (value1.length !== value2.length)
return false;
return value1.every((item, i) => {
return isDeepEqual(item, value2[i]);
});
}
if (type1 === "object") {
const keyArr = Object.keys(value1);
if (keyArr.length !== Object.keys(value2).length)
return false;
return keyArr.every((key) => {
return isDeepEqual(value1[key], value2[key]);
});
}
return Object.is(value1, value2);
}
function notNullish(v) {
return v != null;
}
function noNull(v) {
return v !== null;
}
function notUndefined(v) {
return v !== void 0;
}
function isTruthy(v) {
return Boolean(v);
}
const isDef = (val) => typeof val !== "undefined";
const isBoolean = (val) => typeof val === "boolean";
const isFunction = (val) => typeof val === "function";
const isNumber = (val) => typeof val === "number";
const isString = (val) => typeof val === "string";
const isObject = (val) => toString(val) === "[object Object]";
const isUndefined = (val) => toString(val) === "[object Undefined]";
const isNull = (val) => toString(val) === "[object Null]";
const isRegExp = (val) => toString(val) === "[object RegExp]";
const isDate = (val) => toString(val) === "[object Date]";
const isWindow = (val) => typeof window !== "undefined" && toString(val) === "[object Window]";
const isBrowser = typeof window !== "undefined";
function slash(str) {
return str.replace(/\\/g, "/");
}
function ensurePrefix(prefix, str) {
if (!str.startsWith(prefix))
return prefix + str;
return str;
}
function ensureSuffix(suffix, str) {
if (!str.endsWith(suffix))
return str + suffix;
return str;
}
function template(str, ...args) {
const [firstArg, fallback] = args;
if (isObject(firstArg)) {
const vars = firstArg;
return str.replace(/{([\w\d]+)}/g, (_, key) => vars[key] || ((typeof fallback === "function" ? fallback(key) : fallback) ?? key));
} else {
return str.replace(/{(\d+)}/g, (_, key) => {
const index = Number(key);
if (Number.isNaN(index))
return key;
return args[index];
});
}
}
const urlAlphabet = "useandom-26T198340PX75pxJACKVERYMINDBUSHWOLF_GQZbfghjklqvwyzrict";
function randomStr(size = 16, dict = urlAlphabet) {
let id = "";
let i = size;
const len = dict.length;
while (i--)
id += dict[Math.random() * len | 0];
return id;
}
function capitalize(str) {
return str[0].toUpperCase() + str.slice(1).toLowerCase();
}
const _reFullWs = /^\s*$/;
function unindent(str) {
const lines = (typeof str === "string" ? str : str[0]).split("\n");
const whitespaceLines = lines.map((line) => _reFullWs.test(line));
const commonIndent = lines.reduce((min, line, idx) => {
var _a;
if (whitespaceLines[idx])
return min;
const indent = (_a = line.match(/^\s*/)) == null ? void 0 : _a[0].length;
return indent === void 0 ? min : Math.min(min, indent);
}, Number.POSITIVE_INFINITY);
let emptyLinesHead = 0;
while (emptyLinesHead < lines.length && whitespaceLines[emptyLinesHead])
emptyLinesHead++;
let emptyLinesTail = 0;
while (emptyLinesTail < lines.length && whitespaceLines[lines.length - emptyLinesTail - 1])
emptyLinesTail++;
return lines.slice(emptyLinesHead, lines.length - emptyLinesTail).map((line) => line.slice(commonIndent)).join("\n");
}
const timestamp = () => +Date.now();
function batchInvoke(functions) {
functions.forEach((fn) => fn && fn());
}
function invoke(fn) {
return fn();
}
function tap(value, callback) {
callback(value);
return value;
}
function objectMap(obj, fn) {
return Object.fromEntries(
Object.entries(obj).map(([k, v]) => fn(k, v)).filter(notNullish)
);
}
function isKeyOf(obj, k) {
return k in obj;
}
function objectKeys(obj) {
return Object.keys(obj);
}
function objectEntries(obj) {
return Object.entries(obj);
}
function deepMerge(target, ...sources) {
if (!sources.length)
return target;
const source = sources.shift();
if (source === void 0)
return target;
if (isMergableObject(target) && isMergableObject(source)) {
objectKeys(source).forEach((key) => {
if (key === "__proto__" || key === "constructor" || key === "prototype")
return;
if (isMergableObject(source[key])) {
if (!target[key])
target[key] = {};
if (isMergableObject(target[key])) {
deepMerge(target[key], source[key]);
} else {
target[key] = source[key];
}
} else {
target[key] = source[key];
}
});
}
return deepMerge(target, ...sources);
}
function deepMergeWithArray(target, ...sources) {
if (!sources.length)
return target;
const source = sources.shift();
if (source === void 0)
return target;
if (Array.isArray(target) && Array.isArray(source))
target.push(...source);
if (isMergableObject(target) && isMergableObject(source)) {
objectKeys(source).forEach((key) => {
if (key === "__proto__" || key === "constructor" || key === "prototype")
return;
if (Array.isArray(source[key])) {
if (!target[key])
target[key] = [];
deepMergeWithArray(target[key], source[key]);
} else if (isMergableObject(source[key])) {
if (!target[key])
target[key] = {};
deepMergeWithArray(target[key], source[key]);
} else {
target[key] = source[key];
}
});
}
return deepMergeWithArray(target, ...sources);
}
function isMergableObject(item) {
return isObject(item) && !Array.isArray(item);
}
function objectPick(obj, keys, omitUndefined = false) {
return keys.reduce((n, k) => {
if (k in obj) {
if (!omitUndefined || obj[k] !== void 0)
n[k] = obj[k];
}
return n;
}, {});
}
function clearUndefined(obj) {
Object.keys(obj).forEach((key) => obj[key] === void 0 ? delete obj[key] : {});
return obj;
}
function hasOwnProperty(obj, v) {
if (obj == null)
return false;
return Object.prototype.hasOwnProperty.call(obj, v);
}
function createSingletonPromise(fn) {
let _promise;
function wrapper() {
if (!_promise)
_promise = fn();
return _promise;
}
wrapper.reset = async () => {
const _prev = _promise;
_promise = void 0;
if (_prev)
await _prev;
};
return wrapper;
}
function sleep(ms, callback) {
return new Promise(
(resolve) => setTimeout(async () => {
await (callback == null ? void 0 : callback());
resolve();
}, ms)
);
}
function createPromiseLock() {
const locks = [];
return {
async run(fn) {
const p = fn();
locks.push(p);
try {
return await p;
} finally {
remove(locks, p);
}
},
async wait() {
await Promise.allSettled(locks);
},
isWaiting() {
return Boolean(locks.length);
},
clear() {
locks.length = 0;
}
};
}
function createControlledPromise() {
let resolve, reject;
const promise = new Promise((_resolve, _reject) => {
resolve = _resolve;
reject = _reject;
});
promise.resolve = resolve;
promise.reject = reject;
return promise;
}
/* eslint-disable no-undefined,no-param-reassign,no-shadow */
/**
* Throttle execution of a function. Especially useful for rate limiting
* execution of handlers on events like resize and scroll.
*
* @param {number} delay - A zero-or-greater delay in milliseconds. For event callbacks, values around 100 or 250 (or even higher)
* are most useful.
* @param {Function} callback - A function to be executed after delay milliseconds. The `this` context and all arguments are passed through,
* as-is, to `callback` when the throttled-function is executed.
* @param {object} [options] - An object to configure options.
* @param {boolean} [options.noTrailing] - Optional, defaults to false. If noTrailing is true, callback will only execute every `delay` milliseconds
* while the throttled-function is being called. If noTrailing is false or unspecified, callback will be executed
* one final time after the last throttled-function call. (After the throttled-function has not been called for
* `delay` milliseconds, the internal counter is reset).
* @param {boolean} [options.noLeading] - Optional, defaults to false. If noLeading is false, the first throttled-function call will execute callback
* immediately. If noLeading is true, the first the callback execution will be skipped. It should be noted that
* callback will never executed if both noLeading = true and noTrailing = true.
* @param {boolean} [options.debounceMode] - If `debounceMode` is true (at begin), schedule `clear` to execute after `delay` ms. If `debounceMode` is
* false (at end), schedule `callback` to execute after `delay` ms.
*
* @returns {Function} A new, throttled, function.
*/
function throttle (delay, callback, options) {
var _ref = options || {},
_ref$noTrailing = _ref.noTrailing,
noTrailing = _ref$noTrailing === void 0 ? false : _ref$noTrailing,
_ref$noLeading = _ref.noLeading,
noLeading = _ref$noLeading === void 0 ? false : _ref$noLeading,
_ref$debounceMode = _ref.debounceMode,
debounceMode = _ref$debounceMode === void 0 ? undefined : _ref$debounceMode;
/*
* After wrapper has stopped being called, this timeout ensures that
* `callback` is executed at the proper times in `throttle` and `end`
* debounce modes.
*/
var timeoutID;
var cancelled = false; // Keep track of the last time `callback` was executed.
var lastExec = 0; // Function to clear existing timeout
function clearExistingTimeout() {
if (timeoutID) {
clearTimeout(timeoutID);
}
} // Function to cancel next exec
function cancel(options) {
var _ref2 = options || {},
_ref2$upcomingOnly = _ref2.upcomingOnly,
upcomingOnly = _ref2$upcomingOnly === void 0 ? false : _ref2$upcomingOnly;
clearExistingTimeout();
cancelled = !upcomingOnly;
}
/*
* The `wrapper` function encapsulates all of the throttling / debouncing
* functionality and when executed will limit the rate at which `callback`
* is executed.
*/
function wrapper() {
for (var _len = arguments.length, arguments_ = new Array(_len), _key = 0; _key < _len; _key++) {
arguments_[_key] = arguments[_key];
}
var self = this;
var elapsed = Date.now() - lastExec;
if (cancelled) {
return;
} // Execute `callback` and update the `lastExec` timestamp.
function exec() {
lastExec = Date.now();
callback.apply(self, arguments_);
}
/*
* If `debounceMode` is true (at begin) this is used to clear the flag
* to allow future `callback` executions.
*/
function clear() {
timeoutID = undefined;
}
if (!noLeading && debounceMode && !timeoutID) {
/*
* Since `wrapper` is being called for the first time and
* `debounceMode` is true (at begin), execute `callback`
* and noLeading != true.
*/
exec();
}
clearExistingTimeout();
if (debounceMode === undefined && elapsed > delay) {
if (noLeading) {
/*
* In throttle mode with noLeading, if `delay` time has
* been exceeded, update `lastExec` and schedule `callback`
* to execute after `delay` ms.
*/
lastExec = Date.now();
if (!noTrailing) {
timeoutID = setTimeout(debounceMode ? clear : exec, delay);
}
} else {
/*
* In throttle mode without noLeading, if `delay` time has been exceeded, execute
* `callback`.
*/
exec();
}
} else if (noTrailing !== true) {
/*
* In trailing throttle mode, since `delay` time has not been
* exceeded, schedule `callback` to execute `delay` ms after most
* recent execution.
*
* If `debounceMode` is true (at begin), schedule `clear` to execute
* after `delay` ms.
*
* If `debounceMode` is false (at end), schedule `callback` to
* execute after `delay` ms.
*/
timeoutID = setTimeout(debounceMode ? clear : exec, debounceMode === undefined ? delay - elapsed : delay);
}
}
wrapper.cancel = cancel; // Return the wrapper function.
return wrapper;
}
/* eslint-disable no-undefined */
/**
* Debounce execution of a function. Debouncing, unlike throttling,
* guarantees that a function is only executed a single time, either at the
* very beginning of a series of calls, or at the very end.
*
* @param {number} delay - A zero-or-greater delay in milliseconds. For event callbacks, values around 100 or 250 (or even higher) are most useful.
* @param {Function} callback - A function to be executed after delay milliseconds. The `this` context and all arguments are passed through, as-is,
* to `callback` when the debounced-function is executed.
* @param {object} [options] - An object to configure options.
* @param {boolean} [options.atBegin] - Optional, defaults to false. If atBegin is false or unspecified, callback will only be executed `delay` milliseconds
* after the last debounced-function call. If atBegin is true, callback will be executed only at the first debounced-function call.
* (After the throttled-function has not been called for `delay` milliseconds, the internal counter is reset).
*
* @returns {Function} A new, debounced function.
*/
function debounce (delay, callback, options) {
var _ref = options || {},
_ref$atBegin = _ref.atBegin,
atBegin = _ref$atBegin === void 0 ? false : _ref$atBegin;
return throttle(delay, callback, {
debounceMode: atBegin !== false
});
}
/*
How it works:
`this.#head` is an instance of `Node` which keeps track of its current value and nests another instance of `Node` that keeps the value that comes after it. When a value is provided to `.enqueue()`, the code needs to iterate through `this.#head`, going deeper and deeper to find the last value. However, iterating through every single item is slow. This problem is solved by saving a reference to the last value as `this.#tail` so that it can reference it to add a new value.
*/
class Node {
value;
next;
constructor(value) {
this.value = value;
}
}
class Queue {
#head;
#tail;
#size;
constructor() {
this.clear();
}
enqueue(value) {
const node = new Node(value);
if (this.#head) {
this.#tail.next = node;
this.#tail = node;
} else {
this.#head = node;
this.#tail = node;
}
this.#size++;
}
dequeue() {
const current = this.#head;
if (!current) {
return;
}
this.#head = this.#head.next;
this.#size--;
return current.value;
}
clear() {
this.#head = undefined;
this.#tail = undefined;
this.#size = 0;
}
get size() {
return this.#size;
}
* [Symbol.iterator]() {
let current = this.#head;
while (current) {
yield current.value;
current = current.next;
}
}
}
const AsyncResource = {
bind(fn, _type, thisArg) {
return fn.bind(thisArg);
},
};
function pLimit(concurrency) {
if (!((Number.isInteger(concurrency) || concurrency === Number.POSITIVE_INFINITY) && concurrency > 0)) {
throw new TypeError('Expected `concurrency` to be a number from 1 and up');
}
const queue = new Queue();
let activeCount = 0;
const next = () => {
activeCount--;
if (queue.size > 0) {
queue.dequeue()();
}
};
const run = async (function_, resolve, arguments_) => {
activeCount++;
const result = (async () => function_(...arguments_))();
resolve(result);
try {
await result;
} catch {}
next();
};
const enqueue = (function_, resolve, arguments_) => {
queue.enqueue(
AsyncResource.bind(run.bind(undefined, function_, resolve, arguments_)),
);
(async () => {
// This function needs to wait until the next microtask before comparing
// `activeCount` to `concurrency`, because `activeCount` is updated asynchronously
// when the run function is dequeued and called. The comparison in the if-statement
// needs to happen asynchronously as well to get an up-to-date value for `activeCount`.
await Promise.resolve();
if (activeCount < concurrency && queue.size > 0) {
queue.dequeue()();
}
})();
};
const generator = (function_, ...arguments_) => new Promise(resolve => {
enqueue(function_, resolve, arguments_);
});
Object.defineProperties(generator, {
activeCount: {
get: () => activeCount,
},
pendingCount: {
get: () => queue.size,
},
clearQueue: {
value() {
queue.clear();
},
},
});
return generator;
}
const VOID = Symbol("p-void");
class PInstance extends Promise {
constructor(items = [], options) {
super(() => {
});
this.items = items;
this.options = options;
this.promises = /* @__PURE__ */ new Set();
}
get promise() {
var _a;
let batch;
const items = [...Array.from(this.items), ...Array.from(this.promises)];
if ((_a = this.options) == null ? void 0 : _a.concurrency) {
const limit = pLimit(this.options.concurrency);
batch = Promise.all(items.map((p2) => limit(() => p2)));
} else {
batch = Promise.all(items);
}
return batch.then((l) => l.filter((i) => i !== VOID));
}
add(...args) {
args.forEach((i) => {
this.promises.add(i);
});
}
map(fn) {
return new PInstance(
Array.from(this.items).map(async (i, idx) => {
const v = await i;
if (v === VOID)
return VOID;
return fn(v, idx);
}),
this.options
);
}
filter(fn) {
return new PInstance(
Array.from(this.items).map(async (i, idx) => {
const v = await i;
const r = await fn(v, idx);
if (!r)
return VOID;
return v;
}),
this.options
);
}
forEach(fn) {
return this.map(fn).then();
}
reduce(fn, initialValue) {
return this.promise.then((array) => array.reduce(fn, initialValue));
}
clear() {
this.promises.clear();
}
then(fn) {
const p2 = this.promise;
if (fn)
return p2.then(fn);
else
return p2;
}
catch(fn) {
return this.promise.catch(fn);
}
finally(fn) {
return this.promise.finally(fn);
}
}
function p(items, options) {
return new PInstance(items, options);
}
export { assert, at, batchInvoke, capitalize, clamp, clampArrayRange, clearUndefined, createControlledPromise, createPromiseLock, createSingletonPromise, debounce, deepMerge, deepMergeWithArray, ensurePrefix, ensureSuffix, flattenArrayable, getTypeName, hasOwnProperty, invoke, isBoolean, isBrowser, isDate, isDeepEqual, isDef, isFunction, isKeyOf, isNull, isNumber, isObject, isRegExp, isString, isTruthy, isUndefined, isWindow, last, lerp, mergeArrayable, move, noNull, noop, notNullish, notUndefined, objectEntries, objectKeys, objectMap, objectPick, p, partition, randomStr, range, remap, remove, sample, shuffle, slash, sleep, sum, tap, template, throttle, timestamp, toArray, toString, unindent, uniq, uniqueBy };