feat: 实现OpenAI账户管理和统一调度系统

- 新增 OpenAI 账户管理服务,支持多账户轮询和负载均衡
- 实现统一的 OpenAI API 调度器,智能选择最优账户
- 优化成本计算器,支持更精确的 token 计算
- 更新模型定价数据,包含最新的 OpenAI 模型价格
- 增强 API Key 管理,支持更灵活的配额控制
- 改进管理界面,添加教程视图和账户分组管理
- 优化限流配置组件,提供更直观的用户体验

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
shaw
2025-08-11 13:58:43 +08:00
parent f22a38d24a
commit f462684f97
22 changed files with 6163 additions and 3134 deletions

View File

@@ -3,33 +3,51 @@ const axios = require('axios')
const router = express.Router()
const logger = require('../utils/logger')
const { authenticateApiKey } = require('../middleware/auth')
const redis = require('../models/redis')
const claudeAccountService = require('../services/claudeAccountService')
const unifiedOpenAIScheduler = require('../services/unifiedOpenAIScheduler')
const openaiAccountService = require('../services/openaiAccountService')
const apiKeyService = require('../services/apiKeyService')
const crypto = require('crypto')
// 选择一个可用的 OpenAI 账户,并返回解密后的 accessToken
async function getOpenAIAuthToken() {
// 使用统一调度器选择 OpenAI 账户
async function getOpenAIAuthToken(apiKeyData, sessionId = null, requestedModel = null) {
try {
const accounts = await redis.getAllOpenAIAccounts()
if (!accounts || accounts.length === 0) {
throw new Error('No OpenAI accounts found in Redis')
// 生成会话哈希如果有会话ID
const sessionHash = sessionId
? crypto.createHash('sha256').update(sessionId).digest('hex')
: null
// 使用统一调度器选择账户
const result = await unifiedOpenAIScheduler.selectAccountForApiKey(
apiKeyData,
sessionHash,
requestedModel
)
if (!result || !result.accountId) {
throw new Error('No available OpenAI account found')
}
// 简单选择策略:选择第一个启用并活跃的账户
const candidate =
accounts.find((a) => String(a.enabled) === 'true' && String(a.isActive) === 'true') ||
accounts[0]
if (!candidate || !candidate.accessToken) {
throw new Error('No valid OpenAI account with accessToken')
// 获取账户详情
const account = await openaiAccountService.getAccount(result.accountId)
if (!account || !account.accessToken) {
throw new Error(`OpenAI account ${result.accountId} has no valid accessToken`)
}
const accessToken = claudeAccountService._decryptSensitiveData(candidate.accessToken)
// 解密 accessToken
const accessToken = claudeAccountService._decryptSensitiveData(account.accessToken)
if (!accessToken) {
throw new Error('Failed to decrypt OpenAI accessToken')
}
return { accessToken, accountId: candidate.accountId || 'unknown' }
logger.info(`Selected OpenAI account: ${account.name} (${result.accountId})`)
return {
accessToken,
accountId: result.accountId,
accountName: account.name
}
} catch (error) {
logger.error('Failed to get OpenAI auth token from Redis:', error)
logger.error('Failed to get OpenAI auth token:', error)
throw error
}
}
@@ -37,7 +55,27 @@ async function getOpenAIAuthToken() {
router.post('/responses', authenticateApiKey, async (req, res) => {
let upstream = null
try {
const { accessToken, accountId } = await getOpenAIAuthToken()
// 从中间件获取 API Key 数据
const apiKeyData = req.apiKeyData || {}
// 从请求头或请求体中提取会话 ID
const sessionId =
req.headers['session_id'] ||
req.headers['x-session-id'] ||
req.body?.session_id ||
req.body?.conversation_id ||
null
// 从请求体中提取模型和流式标志
const requestedModel = req.body?.model || null
const isStream = req.body?.stream !== false // 默认为流式(兼容现有行为)
// 使用调度器选择账户
const { accessToken, accountId } = await getOpenAIAuthToken(
apiKeyData,
sessionId,
requestedModel
)
// 基于白名单构造上游所需的请求头,确保键为小写且值受控
const incoming = req.headers || {}
@@ -54,21 +92,39 @@ router.post('/responses', authenticateApiKey, async (req, res) => {
headers['authorization'] = `Bearer ${accessToken}`
headers['chatgpt-account-id'] = accountId
headers['host'] = 'chatgpt.com'
headers['accept'] = 'text/event-stream'
headers['accept'] = isStream ? 'text/event-stream' : 'application/json'
headers['content-type'] = 'application/json'
req.body['store'] = false
// 使用流式转发,保持与上游一致
upstream = await axios.post('https://chatgpt.com/backend-api/codex/responses', req.body, {
headers,
responseType: 'stream',
timeout: 60000,
validateStatus: () => true
})
// 根据 stream 参数决定请求类型
if (isStream) {
// 流式请求
upstream = await axios.post('https://chatgpt.com/backend-api/codex/responses', req.body, {
headers,
responseType: 'stream',
timeout: 60000,
validateStatus: () => true
})
} else {
// 非流式请求
upstream = await axios.post('https://chatgpt.com/backend-api/codex/responses', req.body, {
headers,
timeout: 60000,
validateStatus: () => true
})
}
res.status(upstream.status)
res.setHeader('Content-Type', 'text/event-stream')
res.setHeader('Cache-Control', 'no-cache')
res.setHeader('Connection', 'keep-alive')
res.setHeader('X-Accel-Buffering', 'no')
if (isStream) {
// 流式响应头
res.setHeader('Content-Type', 'text/event-stream')
res.setHeader('Cache-Control', 'no-cache')
res.setHeader('Connection', 'keep-alive')
res.setHeader('X-Accel-Buffering', 'no')
} else {
// 非流式响应头
res.setHeader('Content-Type', 'application/json')
}
// 透传关键诊断头,避免传递不安全或与传输相关的头
const passThroughHeaderKeys = ['openai-version', 'x-request-id', 'openai-processing-ms']
@@ -79,11 +135,170 @@ router.post('/responses', authenticateApiKey, async (req, res) => {
}
}
// 立即刷新响应头,开始 SSE
if (typeof res.flushHeaders === 'function') {
res.flushHeaders()
if (isStream) {
// 立即刷新响应头,开始 SSE
if (typeof res.flushHeaders === 'function') {
res.flushHeaders()
}
}
// 处理响应并捕获 usage 数据和真实的 model
let buffer = ''
let usageData = null
let actualModel = null
let usageReported = false
if (!isStream) {
// 非流式响应处理
try {
logger.info(`📄 Processing OpenAI non-stream response for model: ${requestedModel}`)
// 直接获取完整响应
const responseData = upstream.data
// 从响应中获取实际的 model 和 usage
actualModel = responseData.model || requestedModel || 'gpt-4'
usageData = responseData.usage
logger.debug(`📊 Non-stream response - Model: ${actualModel}, Usage:`, usageData)
// 记录使用统计
if (usageData) {
const inputTokens = usageData.input_tokens || usageData.prompt_tokens || 0
const outputTokens = usageData.output_tokens || usageData.completion_tokens || 0
const cacheCreateTokens = usageData.input_tokens_details?.cache_creation_tokens || 0
const cacheReadTokens = usageData.input_tokens_details?.cached_tokens || 0
await apiKeyService.recordUsage(
apiKeyData.id,
inputTokens,
outputTokens,
cacheCreateTokens,
cacheReadTokens,
actualModel,
accountId
)
logger.info(
`📊 Recorded OpenAI non-stream usage - Input: ${inputTokens}, Output: ${outputTokens}, Total: ${usageData.total_tokens || inputTokens + outputTokens}, Model: ${actualModel}`
)
}
// 返回响应
res.json(responseData)
return
} catch (error) {
logger.error('Failed to process non-stream response:', error)
if (!res.headersSent) {
res.status(500).json({ error: { message: 'Failed to process response' } })
}
return
}
}
// 解析 SSE 事件以捕获 usage 数据和 model
const parseSSEForUsage = (data) => {
const lines = data.split('\n')
for (const line of lines) {
if (line.startsWith('event: response.completed')) {
// 下一行应该是数据
continue
}
if (line.startsWith('data: ')) {
try {
const jsonStr = line.slice(6) // 移除 'data: ' 前缀
const eventData = JSON.parse(jsonStr)
// 检查是否是 response.completed 事件
if (eventData.type === 'response.completed' && eventData.response) {
// 从响应中获取真实的 model
if (eventData.response.model) {
actualModel = eventData.response.model
logger.debug(`📊 Captured actual model: ${actualModel}`)
}
// 获取 usage 数据
if (eventData.response.usage) {
usageData = eventData.response.usage
logger.debug('📊 Captured OpenAI usage data:', usageData)
}
}
} catch (e) {
// 忽略解析错误
}
}
}
}
upstream.data.on('data', (chunk) => {
try {
const chunkStr = chunk.toString()
// 转发数据给客户端
if (!res.headersSent) {
res.write(chunk)
}
// 同时解析数据以捕获 usage 信息
buffer += chunkStr
// 处理完整的 SSE 事件
if (buffer.includes('\n\n')) {
const events = buffer.split('\n\n')
buffer = events.pop() || '' // 保留最后一个可能不完整的事件
for (const event of events) {
if (event.trim()) {
parseSSEForUsage(event)
}
}
}
} catch (error) {
logger.error('Error processing OpenAI stream chunk:', error)
}
})
upstream.data.on('end', async () => {
// 处理剩余的 buffer
if (buffer.trim()) {
parseSSEForUsage(buffer)
}
// 记录使用统计
if (!usageReported && usageData) {
try {
const inputTokens = usageData.input_tokens || 0
const outputTokens = usageData.output_tokens || 0
const cacheCreateTokens = usageData.input_tokens_details?.cache_creation_tokens || 0
const cacheReadTokens = usageData.input_tokens_details?.cached_tokens || 0
// 使用响应中的真实 model如果没有则使用请求中的 model最后回退到默认值
const modelToRecord = actualModel || requestedModel || 'gpt-4'
await apiKeyService.recordUsage(
apiKeyData.id,
inputTokens,
outputTokens,
cacheCreateTokens,
cacheReadTokens,
modelToRecord,
accountId
)
logger.info(
`📊 Recorded OpenAI usage - Input: ${inputTokens}, Output: ${outputTokens}, Total: ${usageData.total_tokens || inputTokens + outputTokens}, Model: ${modelToRecord} (actual: ${actualModel}, requested: ${requestedModel})`
)
usageReported = true
} catch (error) {
logger.error('Failed to record OpenAI usage:', error)
}
}
res.end()
})
upstream.data.on('error', (err) => {
logger.error('Upstream stream error:', err)
if (!res.headersSent) {
@@ -93,8 +308,6 @@ router.post('/responses', authenticateApiKey, async (req, res) => {
}
})
upstream.data.pipe(res)
// 客户端断开时清理上游流
const cleanup = () => {
try {
@@ -116,4 +329,65 @@ router.post('/responses', authenticateApiKey, async (req, res) => {
}
})
// 使用情况统计端点
router.get('/usage', authenticateApiKey, async (req, res) => {
try {
const { usage } = req.apiKey
res.json({
object: 'usage',
total_tokens: usage.total.tokens,
total_requests: usage.total.requests,
daily_tokens: usage.daily.tokens,
daily_requests: usage.daily.requests,
monthly_tokens: usage.monthly.tokens,
monthly_requests: usage.monthly.requests
})
} catch (error) {
logger.error('Failed to get usage stats:', error)
res.status(500).json({
error: {
message: 'Failed to retrieve usage statistics',
type: 'api_error'
}
})
}
})
// API Key 信息端点
router.get('/key-info', authenticateApiKey, async (req, res) => {
try {
const keyData = req.apiKey
res.json({
id: keyData.id,
name: keyData.name,
description: keyData.description,
permissions: keyData.permissions || 'all',
token_limit: keyData.tokenLimit,
tokens_used: keyData.usage.total.tokens,
tokens_remaining:
keyData.tokenLimit > 0
? Math.max(0, keyData.tokenLimit - keyData.usage.total.tokens)
: null,
rate_limit: {
window: keyData.rateLimitWindow,
requests: keyData.rateLimitRequests
},
usage: {
total: keyData.usage.total,
daily: keyData.usage.daily,
monthly: keyData.usage.monthly
}
})
} catch (error) {
logger.error('Failed to get key info:', error)
res.status(500).json({
error: {
message: 'Failed to retrieve API key information',
type: 'api_error'
}
})
}
})
module.exports = router