Files
claude-relay-service/tests/concurrencyQueue.test.js
DaydreamCoding 07633ddbf8 feat: enhance concurrency queue with health check and admin endpoints
- Add queue health check for fast-fail when overloaded (P90 > threshold)
  - Implement socket identity verification with UUID token
  - Add wait time statistics (P50/P90/P99) and queue stats tracking
  - Add admin endpoints for queue stats and cleanup
  - Add CLEAR_CONCURRENCY_QUEUES_ON_STARTUP config option
  - Update documentation with troubleshooting and proxy config guide
2025-12-12 14:32:09 +08:00

279 lines
9.5 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* 并发请求排队功能测试
* 测试排队逻辑中的核心算法:百分位数计算、等待时间统计、指数退避等
*
* 注意Redis 方法的测试需要集成测试环境,这里主要测试纯算法逻辑
*/
// Mock logger to avoid console output during tests
jest.mock('../src/utils/logger', () => ({
api: jest.fn(),
warn: jest.fn(),
error: jest.fn(),
info: jest.fn(),
database: jest.fn(),
security: jest.fn()
}))
// 使用共享的统计工具函数(与生产代码一致)
const { getPercentile, calculateWaitTimeStats } = require('../src/utils/statsHelper')
describe('ConcurrencyQueue', () => {
describe('Percentile Calculation (nearest-rank method)', () => {
// 直接测试共享工具函数,确保与生产代码行为一致
it('should return 0 for empty array', () => {
expect(getPercentile([], 50)).toBe(0)
})
it('should return single element for single-element array', () => {
expect(getPercentile([100], 50)).toBe(100)
expect(getPercentile([100], 99)).toBe(100)
})
it('should return min for percentile 0', () => {
expect(getPercentile([10, 20, 30, 40, 50], 0)).toBe(10)
})
it('should return max for percentile 100', () => {
expect(getPercentile([10, 20, 30, 40, 50], 100)).toBe(50)
})
it('should calculate P50 correctly for len=10', () => {
// For [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] (len=10)
// P50: ceil(50/100 * 10) - 1 = ceil(5) - 1 = 4 → value at index 4 = 50
const arr = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
expect(getPercentile(arr, 50)).toBe(50)
})
it('should calculate P90 correctly for len=10', () => {
// For len=10, P90: ceil(90/100 * 10) - 1 = ceil(9) - 1 = 8 → value at index 8 = 90
const arr = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
expect(getPercentile(arr, 90)).toBe(90)
})
it('should calculate P99 correctly for len=100', () => {
// For len=100, P99: ceil(99/100 * 100) - 1 = ceil(99) - 1 = 98
const arr = Array.from({ length: 100 }, (_, i) => i + 1)
expect(getPercentile(arr, 99)).toBe(99)
})
it('should handle two-element array correctly', () => {
// For [10, 20] (len=2)
// P50: ceil(50/100 * 2) - 1 = ceil(1) - 1 = 0 → value = 10
expect(getPercentile([10, 20], 50)).toBe(10)
})
it('should handle negative percentile as 0', () => {
expect(getPercentile([10, 20, 30], -10)).toBe(10)
})
it('should handle percentile > 100 as 100', () => {
expect(getPercentile([10, 20, 30], 150)).toBe(30)
})
})
describe('Wait Time Stats Calculation', () => {
// 直接测试共享工具函数
it('should return null for empty array', () => {
expect(calculateWaitTimeStats([])).toBeNull()
})
it('should return null for null input', () => {
expect(calculateWaitTimeStats(null)).toBeNull()
})
it('should return null for undefined input', () => {
expect(calculateWaitTimeStats(undefined)).toBeNull()
})
it('should calculate stats correctly for typical data', () => {
const waitTimes = [100, 200, 150, 300, 250, 180, 220, 280, 190, 210]
const stats = calculateWaitTimeStats(waitTimes)
expect(stats.count).toBe(10)
expect(stats.min).toBe(100)
expect(stats.max).toBe(300)
// Sum: 100+150+180+190+200+210+220+250+280+300 = 2080
expect(stats.avg).toBe(208)
expect(stats.sampleSizeWarning).toBeUndefined()
})
it('should add warning for small sample size (< 10)', () => {
const waitTimes = [100, 200, 300]
const stats = calculateWaitTimeStats(waitTimes)
expect(stats.count).toBe(3)
expect(stats.sampleSizeWarning).toBe('Results may be inaccurate due to small sample size')
})
it('should handle single value', () => {
const stats = calculateWaitTimeStats([500])
expect(stats.count).toBe(1)
expect(stats.min).toBe(500)
expect(stats.max).toBe(500)
expect(stats.avg).toBe(500)
expect(stats.p50).toBe(500)
expect(stats.p90).toBe(500)
expect(stats.p99).toBe(500)
})
it('should sort input array before calculating', () => {
const waitTimes = [500, 100, 300, 200, 400]
const stats = calculateWaitTimeStats(waitTimes)
expect(stats.min).toBe(100)
expect(stats.max).toBe(500)
})
it('should not modify original array', () => {
const waitTimes = [500, 100, 300]
calculateWaitTimeStats(waitTimes)
expect(waitTimes).toEqual([500, 100, 300])
})
})
describe('Exponential Backoff with Jitter', () => {
/**
* 指数退避计算函数(与 auth.js 中的实现一致)
* @param {number} currentInterval - 当前轮询间隔
* @param {number} backoffFactor - 退避系数
* @param {number} jitterRatio - 抖动比例
* @param {number} maxInterval - 最大间隔
* @param {number} randomValue - 随机值 [0, 1),用于确定性测试
*/
function calculateNextInterval(
currentInterval,
backoffFactor,
jitterRatio,
maxInterval,
randomValue
) {
let nextInterval = currentInterval * backoffFactor
// 抖动范围:[-jitterRatio, +jitterRatio]
const jitter = nextInterval * jitterRatio * (randomValue * 2 - 1)
nextInterval = nextInterval + jitter
return Math.max(1, Math.min(nextInterval, maxInterval))
}
it('should apply exponential backoff without jitter (randomValue=0.5)', () => {
// randomValue = 0.5 gives jitter = 0
const next = calculateNextInterval(100, 1.5, 0.2, 1000, 0.5)
expect(next).toBe(150) // 100 * 1.5 = 150
})
it('should apply maximum positive jitter (randomValue=1.0)', () => {
// randomValue = 1.0 gives maximum positive jitter (+20%)
const next = calculateNextInterval(100, 1.5, 0.2, 1000, 1.0)
// 100 * 1.5 = 150, jitter = 150 * 0.2 * 1 = 30
expect(next).toBe(180) // 150 + 30
})
it('should apply maximum negative jitter (randomValue=0.0)', () => {
// randomValue = 0.0 gives maximum negative jitter (-20%)
const next = calculateNextInterval(100, 1.5, 0.2, 1000, 0.0)
// 100 * 1.5 = 150, jitter = 150 * 0.2 * -1 = -30
expect(next).toBe(120) // 150 - 30
})
it('should respect maximum interval', () => {
const next = calculateNextInterval(800, 1.5, 0.2, 1000, 1.0)
// 800 * 1.5 = 1200, with +20% jitter = 1440, capped at 1000
expect(next).toBe(1000)
})
it('should never go below 1ms even with extreme negative jitter', () => {
const next = calculateNextInterval(1, 1.0, 0.9, 1000, 0.0)
// 1 * 1.0 = 1, jitter = 1 * 0.9 * -1 = -0.9
// 1 - 0.9 = 0.1, but Math.max(1, ...) ensures minimum is 1
expect(next).toBe(1)
})
it('should handle zero jitter ratio', () => {
const next = calculateNextInterval(100, 2.0, 0, 1000, 0.0)
expect(next).toBe(200) // Pure exponential, no jitter
})
it('should handle large backoff factor', () => {
const next = calculateNextInterval(100, 3.0, 0.1, 1000, 0.5)
expect(next).toBe(300) // 100 * 3.0 = 300
})
describe('jitter distribution', () => {
it('should produce values in expected range', () => {
const results = []
// Test with various random values
for (let r = 0; r <= 1; r += 0.1) {
results.push(calculateNextInterval(100, 1.5, 0.2, 1000, r))
}
// All values should be between 120 (150 - 30) and 180 (150 + 30)
expect(Math.min(...results)).toBeGreaterThanOrEqual(120)
expect(Math.max(...results)).toBeLessThanOrEqual(180)
})
})
})
describe('Queue Size Calculation', () => {
/**
* 最大排队数计算(与 auth.js 中的实现一致)
*/
function calculateMaxQueueSize(concurrencyLimit, multiplier, fixedMin) {
return Math.max(concurrencyLimit * multiplier, fixedMin)
}
it('should use multiplier when result is larger', () => {
// concurrencyLimit=10, multiplier=2, fixedMin=5
// max(10*2, 5) = max(20, 5) = 20
expect(calculateMaxQueueSize(10, 2, 5)).toBe(20)
})
it('should use fixed minimum when multiplier result is smaller', () => {
// concurrencyLimit=2, multiplier=1, fixedMin=5
// max(2*1, 5) = max(2, 5) = 5
expect(calculateMaxQueueSize(2, 1, 5)).toBe(5)
})
it('should handle zero multiplier', () => {
// concurrencyLimit=10, multiplier=0, fixedMin=3
// max(10*0, 3) = max(0, 3) = 3
expect(calculateMaxQueueSize(10, 0, 3)).toBe(3)
})
it('should handle fractional multiplier', () => {
// concurrencyLimit=10, multiplier=1.5, fixedMin=5
// max(10*1.5, 5) = max(15, 5) = 15
expect(calculateMaxQueueSize(10, 1.5, 5)).toBe(15)
})
})
describe('TTL Calculation', () => {
/**
* 排队计数器 TTL 计算(与 redis.js 中的实现一致)
*/
function calculateQueueTtl(timeoutMs, bufferSeconds = 30) {
return Math.ceil(timeoutMs / 1000) + bufferSeconds
}
it('should calculate TTL with default buffer', () => {
// 60000ms = 60s + 30s buffer = 90s
expect(calculateQueueTtl(60000)).toBe(90)
})
it('should round up milliseconds to seconds', () => {
// 61500ms = ceil(61.5) = 62s + 30s = 92s
expect(calculateQueueTtl(61500)).toBe(92)
})
it('should handle custom buffer', () => {
// 30000ms = 30s + 60s buffer = 90s
expect(calculateQueueTtl(30000, 60)).toBe(90)
})
it('should handle very short timeout', () => {
// 1000ms = 1s + 30s = 31s
expect(calculateQueueTtl(1000)).toBe(31)
})
})
})